Preview

Vestnik NSU. Series: Information Technologies

Advanced search

Method of Hypotheses Proving Based on Statistical Processing of Heterogeneous EEG Data

https://doi.org/10.25205/1818-7900-2019-17-1-61-71

Abstract

This article describes the automatization of the hypothesis proving with heterogeneous EEG data obtained using different equipment (Neuroscan and Brain Products). EEG data is recorded from the head surface of the subjects by a helmet, which has 118-128 electrodes (channels). The subject undergoes various tests (trials) during the experiment The EEG data is divided into parts, in accordance with the trials. The connection between electrodes and head is unreliable, some channels may be lost because of the signal weakness. The approach includes unification of EEG-recordings, restoring of lost channels, 3D reconstruction of brain activity and conducting a mediation analysis. Raw data is overwritten in a unified order. Unmatched channels are excluded. Single corrupted channels are restored by spherical spline interpolation. 3D localization of brain activity is based on the inverse problem. The localization is conducted in the functional areas of the cerebral cortex, according to the Talayrak atlas using the MN method. Reconstruction is carried out separately for each trial, and for each of the five standard frequency ranges. The results are recorded in the NIFTI format, focused on the voxel representation. Then a multi-level mediation analysis is carried out. The coordinates of the discovered clusters are compared to the brain map and serve as a basis for interpreting and verifying neurophysiological hypotheses. The approach was implemented as a set of MATLAB scripts, libraries: EEGLAB, NeuroElf, Alphasim, spm8, Mediation toolbox, and the sLORETA software package. The created tools have been practically tested in the processing of neurophysiological experiments on social interaction. Created scripts can be used to test a wide class of neurophysiological hypotheses.

About the Authors

E. A. Merkulova
State Scientific-Research Institute of Physiology & Basic Medicine
Russian Federation


V. E. Zyubin
Institute of Automation and Electrometry SB RAS
Russian Federation


G. G. Knyazev
State Scientific-Research Institute of Physiology & Basic Medicine
Russian Federation


References

1. Зуенко Е. А., Шулунова А. А. Автоматическое выделение боковых желудочков головного мозга на МРТ изображении // Вестник НГУ. Серия: Информационные технологии. 2017. Т. 15, № 4. С. 22-31. DOI 10.25205/1818-7900-2017-15-4-22-31

2. Debener S., Ullsperger M., Siegel M., Fiehler K., Cramon von D. Y., Engel A. K. Single-trial EEG / fMRI reveals the dynamics of cognitive function. Trends Cogn. Sci., 2006, vol. 10, no. 12, p. 558-563. DOI 10.1016/j.tics.2006.09.010

3. Pascual-Marqui R. D. Standardized low resolution brain electromagnetic tomography (sLORETA): technical details. Methods & Findings in Experimental & Clinical Pharmacology, 2002, vol. 24 (Suppl. D), p. 5-12. URL: http://www.uzh.ch/keyinst/NewLORETA/sLORETA/sLORETA-Math01.pdf (accessed 12.11.2018).

4. Buzsaki G., Draguhn A. Neuronal Oscillations in Cortical Networks. Science, 2004, vol. 304, no. 5679, p. 1926-1929. DOI 10.1126/science.1099745

5. Меркулова Е. А. Оценка Профессиональных качеств спортсменов по показаниям ЭЭГ // Интерэкспо ГЕО-Сибирь. 2017. Т. 9, вып. 1. С. 112-113.

6. Koessler L., Maillard L., Benhadida A., Vignal J.-P., Brauna M., Vespignani H. Spatial localization of EEG electrodes. Clinical Neurophysiology, 2007, vol. 37, no. 2, p. 97-102. DOI 10.1016/j.neucli.2007.03.002

7. Daly I., Pichiorri F., Faller J., Kaiser V., Kreilinger A., Scherer R., Müller-Putz G. What does clean EEG look like? In Proc. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society, 2012, p. 3963-3966. DOI 10.1109/EMBC.2012.6346834

8. Delorme A., Sejnowski T., Makeig S. Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis. NeuroImage, 2007, vol. 34, no. 4, p. 1443-1449. DOI 10.1016/j.neuroimage.2006.11.004

9. Knyazev G. G., Slobodskoj-Plusnin J. Y., Bocharov A. V., Pylkova L. V. The default mode network and EEG alpha oscillations: an independent component analysis. Brain Research, 2011, vol. 1402, p. 67-79. DOI 10.1016/j.brainres.2011.05.052

10. Карчевский М. Н., Полетаев И. Е., Сухоруков Г. С. Алгоритмы распознавания и слежения за пузырями для измерения параметров кавитации на гидрокрыле // Вестник НГУ. Серия: Информационные технологии. 2016. Т. 14, № 1. С. 23-38.

11. Kang S. S., Lano T. J., Sponheim S. R. Distortions in EEG interregional phase synchrony by spherical spline interpolation: causes and remedies. Neuropsychiatric Electrophysiology, 2015, vol. 1, no. 1, 9 p. DOI 10.1186/s40810-015-0009-5

12. Меркулова Е. А. Оценка психологических качеств по показаниям электроэнцефалограммы // Материалы молодежной конкурс-конференции «Оптические и информационные технологии» (Новосибирск, 25-27 сентября 2017 г.). Новосибирск, 2017. С. 23-24.

13. Talairach J. Tournoux P: Co-Planar Stereotaxic Atlas of the Human Brain. 3-Dimensional Proportional System: An Approach to Cerebral Imaging. Stuttgart. Thieme, 1988, p. 122. DOI 10.1016/S1053-8119(03)00252-0

14. Гнездинский В. В. Обратная задача ЭЭГ и клиническая электроэнцефалография. М.: МЕДпресс-информ, 2004. 623 с.

15. Pascual-Marqui R. D. Review of Methods for Solving the EEG Inverse Problem. International Journal of Bioelectromagnetism, 1999, vol. 1, no. 1, p. 75-86. URL: http://www.tut.fi/ijbem (accessed 12.11.2018).

16. Павловский Е. Н., Пакулич Д. В., Поспелов С. О. Восстановления 3D-модели дефекта черепа на основе глубоких нейронных сетей // Вестник НГУ. Серия: Информационные технологии. 2017. Т. 15, № 3. С. 74-78. DOI 10.25205/1818-7900-2017-15-3-74-78

17. Cox R. W., Ashburner J., Breman H., Fissell K., Haselgrove C., Holmes C. J., Lancaster J. L., Rex D. E., Smith S. M., Woodward J. B., Strother S. C. A sort of new image data format standard: NIfTI-1. In: 10th Annual Meeting of the Organization for Human Brain Mapping. 2004. URL: https://nifti.nimh.nih.gov/nifti-1/documentation/hbm_nifti_2004.pdf (accessed 12.11.2018).

18. Wager T. D., Davidson M. L., Hughes B. L., Lindquist M. A., Ochsner K. N. Prefrontalsubcortical pathways mediating successful emotion regulation. Neuron, 2008, vol. 59, p. 1037- 1050. DOI 10.1016/j.neuron.2008.09.006

19. Hayes A. An introduction to mediation, moderation, and conditional process analysis: A re-gression-based approach. Guilford, New York, NY, The Guilford Press, 2013. DOI 10.1111/ jedm.12050

20. Forman S., Cohen J., Fitzgerald M., Eddy W., Mintun M., Noll D. Improved assessment of significant activation in functional magnetic resonance imaging (fMRI): use of a cluster-size threshold. Magnetic Resonance in Medicine, 1995, vol. 33, p. 636-647. DOI 10.1002/ mrm.1910330508

21. Knyazev G., Pylkova L., Slobodskoj-Plusnin J., Bocharov A., Ushakov D. Personality and the neural efficiency theory. Personality and Individual Differences, 2015, vol. 86, p. 67-72. DOI: 10.1016/j.paid.2015.06.002

22. Knyazev G., Savostyanov A., Bocharov A., Rimareva J. Anxiety, depression, and oscillatory dynamics in a social interaction model. Brain Research, 2016. vol. 1644, p. 62-69. DOI 10.1016/j.brainres.2016.04.075

23. Knyazev G., Merkulova E., Savostyanov A., Bocharov A., Saprigyn A. Effect of cultural priming on social behavior and EEG correlates of self-processing. Frontiers in Behavioral Neuroscience, 2018, vol. 12. DOI 10.3389/fnbeh.2018.00236


Review

For citations:


Merkulova E.A., Zyubin V.E., Knyazev G.G. Method of Hypotheses Proving Based on Statistical Processing of Heterogeneous EEG Data. Vestnik NSU. Series: Information Technologies. 2019;17(1):61-71. (In Russ.) https://doi.org/10.25205/1818-7900-2019-17-1-61-71

Views: 58


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-7900 (Print)
ISSN 2410-0420 (Online)