Preview

Vestnik NSU. Series: Information Technologies

Advanced search

The Development of the Information System of the Representation of the Complex Analysis Results for the Poetic Texts

https://doi.org/10.25205/1818-7900-2019-17-1-5-17

Abstract

The project on automation of work with poetic texts, implemented in the Institute of Computational Technologies SB RAS, includes a complex of studies related to the analysis of poetic texts is carried out. Each component of the project belongs to one of the structural levels of text analysis: structural, semantic, pragmatic. The structural analysis of the poetic text is associated with the definition of its metrorhythmic characteristics. In the context of semantic analysis, the research on the extraction of semantic structures from the poetic texts is carried out. The pragmatic level includes the research on the automatic identification of high-level characteristics of poetic text, such as genre and style. This paper describes the process of designing and implementing of the creation of an information system for presenting the results of the analysis of poetic texts. At the design stage, the tasks to be solved by the information system are formulated, as well as the requirements in order of priority for the overall project. The presented information system combines heterogeneous information about the results of the analysis of poetic texts obtained at each level of representation. Based on the needs of potential users, the description of the external interacting elements of the system is performed. The test interface for the access to the information system storage was developed. The implementation of the information system will provide a significant simplification of the research of poetic texts.

About the Authors

V. B. Barakhnin
Institute of Computational Technologies SB RAS; Novosibirsk State University
Russian Federation


O. Yu. Kozhemyakina
Institute of Computational Technologies SB RAS
Russian Federation


Y. S. Borzilova
Institute of Computational Technologies SB RAS
Russian Federation


References

1. Барахнин В. Б., Кожемякина О. Ю. Об автоматизации комплексного анализа русского поэтического текста // CEUR Workshop Proceedings. 2012. Т. 934. С. 167-171.

2. Барахнин В. Б., Кожемякина О. Ю., Забайкин А. В., Хаятова В. Д. Автоматизация комплексного анализа русского поэтического текста: модели и алгоритмы // Вестник НГУ. Серия: Информационные технологии. 2015. Т. 13, № 3. С. 5-18.

3. Козьмин А. В. Автоматический анализ стиха в системе Starling // Тр. Междунар. конф. «Компьютерная лингвистика и интеллектуальные технологии». М.: Изд. центр РГГУ, 2006. С. 265-268.

4. Бойков Н. В., Каряева М. С., Соколов В. А. и др. Об автоматической спецификации стиха в информационно-аналитической системе // Тр. XVII Междунар. конф. «Аналитика и управление данными в областях с интенсивным использованием данных». Обнинск: ИАТЭ НИЯУ МИФИ, 13-16 окт. 2015 г., С. 144-151.

5. Пильщиков И. А., Старостин А. С. Проблемы автоматизации базовых процедур ритмико-синтаксического анализа силлабо-тонических текстов // Национальный корпус русского языка: 2006-2008: Новые результаты и перспективы. СПб., 2009. С. 298-315.

6. Пильщиков И. А., Старостин А. С. Автоматическое распознавание стихотворных размеров: теория и практика // Поэтика и фоностилистика: Бриковский сборник. М., 2010. Вып. 1: Материалы Междунар. науч. конф. «I Бриковские чтения: Поэтика и фоностилистика» (Москва, 10-12 февраля 2010 года). С. 41-49.

7. Pilshchikov I., Starostin A. Automated Analysis of Poetic Texts and the Problem of Verse Meter. Current Trends in Metrical Analysis. Littera: Studies in Language and Literature, 2011, p. 133-140.

8. Барахнин В. Б., Кожемякина О. Ю., Пастушков И. С. Сравнительный анализ методов автоматической классификации поэтических текстов на основе лексических признаков // CEUR Workshop Proceedings. 2017. Т. 2022. С. 252-257.

9. Bulygin M. V., Sharoff S. A. Using Machine Translation for Automatic Genre Classification in Arabic. In: Proc. International conference “Computational linguistics and intellectual technologies”, 2006, p. 153-162.

10. Loukachevitch N. V., Rusnachenko N. Extracting Sentiment Attitudes from Analytical Texts. In: Proc. International conference “Computational linguistics and intellectual technologies”, 2018, p. 459-468.

11. Delmonte R. Computing poetry style. CEUR Workshop Proceedings, 2013, vol. 1096, p. 148-155.

12. Bacalu C., Delmonte R. Prosodic Modeling for Speech Recognition. In: Proc. Workshop AI*IA, 1999, p. 45-55.

13. Bobenhausen K., Hammerich K. Literary metrics, Linguistic metrics, and the algorithmic analysis of German poetry using Metricalizer. Languages, 2015, vol. 199, no. 3, p. 67-87.

14. Barakhnin V. B., Kozhemyakina O. Yu., Rychkova E. V., Gladkikh A. S., Pastushkov I. S. Software for learning to solve problems of classification using of machine learning. In: European Proc. of Social & Behavioural Sciences, 2018, p. 106-112. DOI 10.15405/epsbs.2018. 11.02.12.


Review

For citations:


Barakhnin V.B., Kozhemyakina O.Yu., Borzilova Y.S. The Development of the Information System of the Representation of the Complex Analysis Results for the Poetic Texts. Vestnik NSU. Series: Information Technologies. 2019;17(1):5-17. (In Russ.) https://doi.org/10.25205/1818-7900-2019-17-1-5-17

Views: 80


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-7900 (Print)
ISSN 2410-0420 (Online)