The Development of the Information System of the Representation of the Complex Analysis Results for the Poetic Texts
https://doi.org/10.25205/1818-7900-2019-17-1-5-17
Abstract
About the Authors
V. B. BarakhninRussian Federation
O. Yu. Kozhemyakina
Russian Federation
Y. S. Borzilova
Russian Federation
References
1. Барахнин В. Б., Кожемякина О. Ю. Об автоматизации комплексного анализа русского поэтического текста // CEUR Workshop Proceedings. 2012. Т. 934. С. 167-171.
2. Барахнин В. Б., Кожемякина О. Ю., Забайкин А. В., Хаятова В. Д. Автоматизация комплексного анализа русского поэтического текста: модели и алгоритмы // Вестник НГУ. Серия: Информационные технологии. 2015. Т. 13, № 3. С. 5-18.
3. Козьмин А. В. Автоматический анализ стиха в системе Starling // Тр. Междунар. конф. «Компьютерная лингвистика и интеллектуальные технологии». М.: Изд. центр РГГУ, 2006. С. 265-268.
4. Бойков Н. В., Каряева М. С., Соколов В. А. и др. Об автоматической спецификации стиха в информационно-аналитической системе // Тр. XVII Междунар. конф. «Аналитика и управление данными в областях с интенсивным использованием данных». Обнинск: ИАТЭ НИЯУ МИФИ, 13-16 окт. 2015 г., С. 144-151.
5. Пильщиков И. А., Старостин А. С. Проблемы автоматизации базовых процедур ритмико-синтаксического анализа силлабо-тонических текстов // Национальный корпус русского языка: 2006-2008: Новые результаты и перспективы. СПб., 2009. С. 298-315.
6. Пильщиков И. А., Старостин А. С. Автоматическое распознавание стихотворных размеров: теория и практика // Поэтика и фоностилистика: Бриковский сборник. М., 2010. Вып. 1: Материалы Междунар. науч. конф. «I Бриковские чтения: Поэтика и фоностилистика» (Москва, 10-12 февраля 2010 года). С. 41-49.
7. Pilshchikov I., Starostin A. Automated Analysis of Poetic Texts and the Problem of Verse Meter. Current Trends in Metrical Analysis. Littera: Studies in Language and Literature, 2011, p. 133-140.
8. Барахнин В. Б., Кожемякина О. Ю., Пастушков И. С. Сравнительный анализ методов автоматической классификации поэтических текстов на основе лексических признаков // CEUR Workshop Proceedings. 2017. Т. 2022. С. 252-257.
9. Bulygin M. V., Sharoff S. A. Using Machine Translation for Automatic Genre Classification in Arabic. In: Proc. International conference “Computational linguistics and intellectual technologies”, 2006, p. 153-162.
10. Loukachevitch N. V., Rusnachenko N. Extracting Sentiment Attitudes from Analytical Texts. In: Proc. International conference “Computational linguistics and intellectual technologies”, 2018, p. 459-468.
11. Delmonte R. Computing poetry style. CEUR Workshop Proceedings, 2013, vol. 1096, p. 148-155.
12. Bacalu C., Delmonte R. Prosodic Modeling for Speech Recognition. In: Proc. Workshop AI*IA, 1999, p. 45-55.
13. Bobenhausen K., Hammerich K. Literary metrics, Linguistic metrics, and the algorithmic analysis of German poetry using Metricalizer. Languages, 2015, vol. 199, no. 3, p. 67-87.
14. Barakhnin V. B., Kozhemyakina O. Yu., Rychkova E. V., Gladkikh A. S., Pastushkov I. S. Software for learning to solve problems of classification using of machine learning. In: European Proc. of Social & Behavioural Sciences, 2018, p. 106-112. DOI 10.15405/epsbs.2018. 11.02.12.
Review
For citations:
Barakhnin V.B., Kozhemyakina O.Yu., Borzilova Y.S. The Development of the Information System of the Representation of the Complex Analysis Results for the Poetic Texts. Vestnik NSU. Series: Information Technologies. 2019;17(1):5-17. (In Russ.) https://doi.org/10.25205/1818-7900-2019-17-1-5-17