Preview

Vestnik NSU. Series: Information Technologies

Advanced search

DESCRITION OF COASTAL PROFILE LONG TERM EVOLUTION BY DIFFUSION MODEL

https://doi.org/10.25205/1818-7900-2018-16-4-13-19

Abstract

Diffusion model is considered to describe coastal depth profile. For model calibration an inverse problem for equation coefficient reconstruction was solved by minimization of a certain misfit functional using an extra boundary conditions. Multy-dimensional optimization was arranged with the help of differential evolution method. Finite elements method was used to calculate model depth profile. The JARKUS dataset was used for testing at different temporal and spatial intervals. Relative error at the level of 5 % was achieved.

About the Authors

D. A. Baramiya
Novosibirsk State University
Russian Federation


N. I. Gorbenko
nstitute of Computational Mathematics and Mathematical Geophysics SB RAS
Russian Federation


M. M. Lavrentiev
Novosibirsk State University; Institute of Automation and Electrometry SB RAS
Russian Federation


References

1. De Vriend H. I., Capobianco M., Chesher T., Swart Th. E. de, Latteux B., Stive M. J. F. Approaches to long-term modelling of coastal morphology: a Review // Coastal Engineering. Amsterdam: Elsevier Science Publ., 1993. Vol. 21. P. 225-269.

2. Bakker W. T. The dynamics of a coast with a groyne system // Proc. of the 11th Coastal Engineering Conference. American Society of Civil Engineers (ASCE). 1968. P. 492-517.

3. Capobianco M. A procedure for parameter identification of partial differential equations of parabolic type // G6-M Workshop “System Dynamics”, Delft Hydraulics. 1992.

4. Dean R. G. Equilibrium beach profiles: characteristics and applications // J. Coastal Res. 1991. Vol. 7. No. 1. P. 53-84.

5. Hanson H. GENESIS, a generalized shoreline change numerical model for engineering use // Univ. of Lund, Dept. of Water Res. Eng. 1987. Report Vol. 1007. 206 p.

6. Larson M., Hanson H., Kraus N. C. Analytical solutions of the one-line model of shoreline change // Report to U.S. Army Corps of Engineers, Coastal Engineering Research Center. 1987. 6 p.

7. Beavers R., Howd P., Birkemeier W., Hathaway K. Evaluating profile data and depth of closure with sonar altimetry // Proc. Hauppauge Coastal Sediments. 1999. Vol. 1. P. 479-490.

8. Avdeev A. V., Lavrentiev M. M., Priimenko V. I. Inverse Problems and Some Applications. Novosibirsk, 1999. 342 p.

9. Lavrentiev M. M., Romanov V. G., Shishatskii Y. Ill-Posed Problems of Mathematical Physics and Analysis // AMS Translations of Math. Monographs. 2017. 290 p.

10. Larson M. G., Bengzon F. The Finite Element Method: Theory, Implementation, and Applications. Springer, 2013. 395 p.


Review

For citations:


Baramiya D.A., Gorbenko N.I., Lavrentiev M.M. DESCRITION OF COASTAL PROFILE LONG TERM EVOLUTION BY DIFFUSION MODEL. Vestnik NSU. Series: Information Technologies. 2018;16(4):13-19. (In Russ.) https://doi.org/10.25205/1818-7900-2018-16-4-13-19

Views: 58


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-7900 (Print)
ISSN 2410-0420 (Online)