Preview

Vestnik NSU. Series: Information Technologies

Advanced search

CYTOSCAPE PLUGIN FOR RECONSTRUCTION OF STRUCTURAL RANDOM GRAPH MODELS OF BIOLOGICAL NETWORKS

https://doi.org/10.25205/1818-7900-2018-16-3-37-50

Abstract

Modern experimental technologies in molecular biology allow reconstructing different types of biological networks, including gene and metabolic networks, networks of interatomic, gene coexpression networks, a network of diseases, etc. This article presents the program tool for reconstructing structural random graph models of biological networks, the structural regularities of which coincide with the structural regularities of the initial biological network. Such structural models can be used to test various statistical hypotheses on networks, to study the influence of structural regularities in biological networks on their function, and so on. Our tool generate the structural random graph models with the following fixed characteristics: the distribution of vertex degrees, the joint distribution of degrees of vertices, the average degree of neighboring vertices, the clustering coefficient, the clustering spectrum, the frequency of structural motifs of various sizes, etc. The developed system is based on the client-server architecture and consists of the Cytoscape plug-application and remote computing service. The interaction between the client and the server is implemented through the gRPC framework using the Protocol Buffers (structured data serialization protocol). The system allows to construct the structural random graph models of the given biological networks asynchronously through software Random Network Generator and GTrie Scanner. The result structural model can be loaded for visualization and analysis using the Cytoscape package. This article also presents the computational experiment for reconstruct the structural random graph models of a number of biological networks. The algorithm for estimating the time of calculations of structural models of this kind of biological networks was constructed.

About the Authors

N. L. Podkolodnyy
Institute of Cytology and Genetics SB RAS; Institute of Computational Mathematics and Mathematical Geophysics SB RAS
Russian Federation


D. A. Gavrilov
Novosibirsk State University
Russian Federation


N. N. Tverdokhleb
Institute of Cytology and Genetics SB RAS; Novosibirsk State University
Russian Federation


O. A. Podkolodnaya
Institute of Cytology and Genetics SB RAS
Russian Federation


References

1. Alm E., Arkin A. P. Biological networks // Current opinion in structural biology. 2003. Vol. 13. No. 2. P. 193-202.

2. Gosak M., Markovič R., Dolenšek J., Slak Rupnik M., Marhl M., Stožer A., Perc M. Network science of biological systems at different scales: A review // Physics of Life Reviews. 2018. Vol. 24. P. 118-135.

3. Ananko E. A., Podkolodnyy N. L., Stepanenko I. L., Podkolodnaya O. A., Rasskazov D. A., Miginsky D. S., Likhoshvai V. A., Ratushny A. V., Podkolodnaya N. N., Kolchanov N. A. GeneNet in 2005 // Nucleic Acids Res. 2005. Vol. 33. P. D425-D427.

4. Vella D., Zoppis I., Mauri G., Mauri P., Di Silvestre D. From protein-protein interactions to protein co-expression networks: a new perspective to evaluate large-scale proteomic data // EURASIP Journal on Bioinformatics and Systems Biology. 2017. Vol. 6.

5. Stuart J. M., Segal E., Koller D., Kim S. K. A gene-coexpression network for global discovery of conserved genetic modules // Science. 2003. Vol. 302 (5643). P. 249-255.

6. Podkolodnaya O. A., Podkolodnaya N. N., Podkolodnyy N. L. The mammalian circadian clock: Gene regulatory network and computer analysis // Russian Journal of Genetics: Applied Research. 2015. Vol. 5. No. 4. P. 354-362.

7. Emamjomeh A., Robat E. S., Zahiri J., Solouki M., Khosravi P. Gene co-expression network reconstruction: a review on computational methods for inferring functional information from plant-based expression data // Plant Biotechnol. Rep. 2017. Vol. 11. P. 71-86.

8. Hu J. X., Thomas C. E., Brunak S. Network biology concepts in complex disease comorbidities // Nature Reviews Genetics. 2016. Vol. 17. P. 615-629.

9. Novkovic M., Onder L., Bocharov G., Ludewig B. Graph Theory-Based Analysis of the Lymph Node Fibroblastic Reticular Cell Network // Methods Mol. Biol. 2017. Vol. 1591. P. 43-57. DOI: 10.1007/978-1-4939-6931-9_4.

10. Grebennikov D., Loon R. van, Novkovic M., Onder L., Savinkov R., Sazonov I., Tretyakova R., Watson D. J., Bocharov G. Critical Issues in Modeling Lymph Node Physiology // Computation. 2017. Vol. 5 (3).

11. Ivanisenko V. A., Saik O. V., Ivanisenko N. V., Tiys E. S., Ivanisenko T. V., Demenkov P. S., Kolchanov N. A. ANDSystem: an Associative Network Discovery System for automated literature mining in the field of biology // BMC Syst. Biol. 2015. Vol. 9. Suppl. 2:S2. DOI: 10.1186/17520509-9-S2-S2.

12. Luo T., Wu S., Shen X., Li L. Network cluster analysis of protein-protein interaction network identified biomarker for early onset colorectal cancer // Mol. Biol. Rep. 2013. Vol. 40 (12). P. 6561-6568.

13. Yan W., Xue W., Chen J., Hu G. Biological Networks for Cancer Candidate Biomarkers Discovery // Cancer Informatics. 2016. Vol. 15 (S3). P. 1-7. DOI: 10.4137/CIN.S39458.

14. Albert R., Jeong H., Barabasi A.-L. Error and attack tolerance of complex networks // Nature. 2000. Vol. 406. P. 378-382. Truong C.-D., Kwon Y.-K. Investigation on changes of modularity and robustness by edge-removal mutations in signaling networks // BMC Systems Biology. 2017. Vol. 11 (Suppl. 7). P. 125.

15. Erdős P., Rényi A. On random graphs I // Publications Mathematicae Debrecen. 1959. Vol. 6. P. 290-297.

16. Gilbert E. N. Random graphs // Annals of Mathematical Statistics. 1959. Vol. 30. P. 1141-1144. DOI:10.1214/aoms/1177706098.

17. Bollobas B., Riordan O. M. Mathematical results on scale-free random graphs // Handbook of Graphs and Networks. 1st ed. Eds. S. Bornholdt, H. G. Schuster. Wiley VCH, Weinheim, 2003. P. 1-34.

18. Orsini C., Dankulov M. M., Colomer-de-Simón P., Jamakovic A., Mahadevan P., Vahdat A., Bassler K. E., Toroczkai Z., Boguñá M., Caldarelli G., Fortunato S., Krioukov D. Quantifying randomness in real networks // Nature Communications. 2015. Vol. 6. P. 8627.

19. Orsini C., Mitrovic D. M., Jamakovic A., Mahadevan P., Colomer-de-Simon P., Vahdat A., Bassler K., Toroczkai Z., Boguñá M., Caldarelli G., Fortunato S., Krioukov D. How random are complex networks // CoRR. 2015. abs/1505.07503.

20. Newman M. E. J. Assortative Mixing in Networks // Phys. Rev. Lett. 2002. Vol. 89. P. 208701.

21. Nobari S. et al. Fast random graph generation // Proc. of the 14th International conference on extending database technology. ACM, 2011. P. 331-342.

22. Milo R., Shen-Orr S., Itzkovitz S., Kashtan N., Chklovskii D., Alon U. Network motifs: simple building blocks of complex networks // Science. 2002. Vol. 298. P. 824-827.

23. Jamakovic A. et al. How small are building blocks of complex networks // arXiv preprint arXiv:0908. 1143. - 2009.

24. Taylor R. Constrained switching in graphs // SIAM J. Algebraic Discrete Meth. 1982. Vol. 3 (1). P. 115-121.

25. Simon P. C. de. RandNetGen: a Random Network Generator. URL: http://polcolomer. github.io/RandNetGen/ (дата обращения 25.05.2018).

26. Stanton I., Pinar A. Constructing and sampling graphs with a prescribed joint degree distribution // ACM J. Exp. Algor. 2012. Vol. 17 (3). Article 3.5 (August 2012). 25 p.

27. Ray J., Pinar A., Seshadhri C. A stopping criterion for Markov chains when generating independent random graphs // Journal of Complex Networks. 2015. Vol. 3 (2). P. 204-220.

28. Shannon P., Markiel A., Ozier O., Baliga N. S., Wang J. T., Ramage D., Amin N., Schwikowski B., Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks // Genome Res. 2003. Nov. Vol. 13 (11). P. 2498-2504.

29. Killcoyne S. et al. Cytoscape: a community-based framework for network modeling // Protein Networks and Pathway Analysis. 2009. P. 219-239.

30. Saito R. et al. A travel guide to Cytoscape plugins // Nature Methods. 2012. Vol. 9. No. 11. P. 1069-1076.

31. Lotia S., Montojo J., Dong Y., Bader G. D., Pico A. R. Cytoscape app store // Bioinformatics. 2013. Vol. 29 (10). P. 1350-1351.

32. Донован А. А., Керниган Б. У. Язык программирования Go: Пер. с англ. М.: ИД Вильямс, 2016. 432 с.

33. Cerami E. Web services essentials: distributed applications with XML-RPC, SOAP, UDDI & WSDL. O'Reilly Media, Inc., 2002. 304 p.

34. Seymour K. et al. Overview of GridRPC: A remote procedure call API for grid computing // International Workshop on Grid Computing. Springer, Berlin, Heidelberg, 2002. P. 274-278.

35. Varda K. Protocol buffers: Google’s data interchange format // Google Open Source Blog, Jul. 2008. URL: https://opensource.googleblog.com/2008/07/protocol-buffers-googles-data.html/. (дата обращения 20.07.2018)

36. Ribeiro P. gtrieScanner - Quick Discovery of Network Motifs // CRACS & INESC-TEC, DCC/FCUP. URL: http://www.dcc.fc.up.pt/gtries/ (дата обращения 25.05.2018).

37. Goh K. I. et al. The human disease network // Proc. of the National Academy of Sciences. 2007. Vol. 104. No. 21. P. 8685-8690.

38. Bu D. et al. Topological structure analysis of the protein-protein interaction network in budding yeast // Nucleic acids research. 2003. Vol. 31. No. 9. P. 2443-2450.

39. Подколодный Н. Л., Твердохлеб Н. Н., Подколодная О. А. Анализ циркадного ритма биологических процессов в печени и почках мыши // Вавиловский журнал генетики и селекции. 2017. Т. 21, № 8. С. 903-910.

40. Kotlyar M. et al. Integrated Interactions Database: Tissue-specific view of the human and model organism interactomes // Nucleic Acids Res. URL: http://dcv.uhnres.utoronto.ca/iid/ (дата обращения 20.07.2018).


Review

For citations:


Podkolodnyy N.L., Gavrilov D.A., Tverdokhleb N.N., Podkolodnaya O.A. CYTOSCAPE PLUGIN FOR RECONSTRUCTION OF STRUCTURAL RANDOM GRAPH MODELS OF BIOLOGICAL NETWORKS. Vestnik NSU. Series: Information Technologies. 2018;16(3):37-50. (In Russ.) https://doi.org/10.25205/1818-7900-2018-16-3-37-50

Views: 118


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-7900 (Print)
ISSN 2410-0420 (Online)