Preview

Vestnik NSU. Series: Information Technologies

Advanced search

Using the Teachable Machine Online Platform to Diagnose Cardiovascular Diseases

https://doi.org/10.25205/1818-7900-2025-23-3-57-66

Abstract

The possibility of improving the quality of cardiovascular disease diagnostics by using machine learning is presented. The article discusses digital equipment for obtaining audiograms. A data set for machine learning of a cardiovascular  disease classification model is described. One of the sections is devoted to the development of a web application for remote diagnostics using the obtained model.

About the Authors

D. M. Popov
Kemerovo State Medical University
Russian Federation

Dmitry M. Popov, Candidate of Technical Sciences, Associate Professor

Kemerovo



E. V. Prosvirkina
Kemerovo State Medical University
Russian Federation

Elena V. Prosvirkina, Candidate of Chemical Sciences, Head of the Department of Medical, Biological Physics and Higher Mathematics, Associate Professor

Kemerovo



A. Y. Sakharchuk
Kemerovo State Medical University
Russian Federation

Alexey Yu. Sakharchuk, Resident Physician

Kemerovo



S. D. Rudnev
Kemerovo State Medical University
Russian Federation

Sergey D. Rudnev, Doctor of Technical Sciences, Professor

Kemerovo



References

1. Kobelev A. Cardiovascular diseases: we are in the «red» risk zone. RG.RU Rossiyskaya Gazeta. 10/02/2024. URL: https://rg.ru/2024/10/02/serdechno-sosudistye-zabolevaniia-my-prebyvaemv-krasnoj-zone-riska.html (in Russ.)

2. Garanin A. A., Aydumova O. Y., Rubanenko A. O., Bibikova E. G. Digital stethoscope: a new era of auscultation. Digital Diagnostic, 2024, vol. 5, nо. 4, pр. 808–818. DOI: 10.17816/DD632499 (in Russ.)

3. Leng S., Tan R. S., Chai K. T. C. et al. The electronic stethoscope. BioMed Eng OnLine 14, 66 (2015). https://doi.org/10.1186/s12938-015-0056-y

4. Prosvirkina E. V., Sakharchuk A. Yu. Study of the work of artifi cial intelligence in processing audiograms. Strategic vectors of development of science, medicine, digital and educational technologies. Collection of scientifi c articles. Kemerovo, 2024, рр. 197–200. (in Russ.)

5. Trofi mova V. S., Karshieva P. K., Rakhmanenko I. A. Transfer learning method for additional training of neural networks for dataset features in the speaker verifi cation problem. Software systems and computational methods, 2024, no. 3. DOI: 10.7256/2454-0714.2024.3.71630 EDN: XHZCTS URL: htps:/nbpublish.com/library-read-article.php?id=71630 (in Russ.)

6. Pete Warden. Speech Commands: A Dataset for Limited-Vocabulary Speech Recognition. 2018, 1514764800000, CoRR, abs/1804.03209, http://arxiv.org/abs/1804.03209

7. Rabiner L. R., Shafer R. V. Digital processing of speech signals. Translated from English. Edited by M. V. Nazarov and Yu. N. Prokhorov. Moscow, Radio and Communications, 1981, 496 p. (in Russ.)

8. Flach P. Machine learning. The Art and Science of Algorithms that Make Sense of Data. Trans. from English by A. A. Slinkin. Moscow, DMK Press, 2015, 400 p. (in Russ.)

9. Gorshkov Ju. G. Poluchenie i obrabotka mnogourovnevyh chastotno-vremennyh akustokardiogramm [Reception and processing of multilevel time-frequency acoustocardiograms]. Medical equipment, 2013, no. 1, pp. 15–17. (in Russ.)

10. Gorshkov Ju. G. Novye cifrovye tehnologii obrabotki zvukov serdca [New digital technologies for processing heart sounds]. Biomedical radio electronics, 2013, no. 8, pp. 36–40. (in Russ.)


Review

For citations:


Popov D.M., Prosvirkina E.V., Sakharchuk A.Y., Rudnev S.D. Using the Teachable Machine Online Platform to Diagnose Cardiovascular Diseases. Vestnik NSU. Series: Information Technologies. 2025;23(3):57-66. (In Russ.) https://doi.org/10.25205/1818-7900-2025-23-3-57-66

Views: 71


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-7900 (Print)
ISSN 2410-0420 (Online)