Using the Teachable Machine Online Platform to Diagnose Cardiovascular Diseases
https://doi.org/10.25205/1818-7900-2025-23-3-57-66
Abstract
The possibility of improving the quality of cardiovascular disease diagnostics by using machine learning is presented. The article discusses digital equipment for obtaining audiograms. A data set for machine learning of a cardiovascular disease classification model is described. One of the sections is devoted to the development of a web application for remote diagnostics using the obtained model.
About the Authors
D. M. PopovRussian Federation
Dmitry M. Popov, Candidate of Technical Sciences, Associate Professor
Kemerovo
E. V. Prosvirkina
Russian Federation
Elena V. Prosvirkina, Candidate of Chemical Sciences, Head of the Department of Medical, Biological Physics and Higher Mathematics, Associate Professor
Kemerovo
A. Y. Sakharchuk
Russian Federation
Alexey Yu. Sakharchuk, Resident Physician
Kemerovo
S. D. Rudnev
Russian Federation
Sergey D. Rudnev, Doctor of Technical Sciences, Professor
Kemerovo
References
1. Kobelev A. Cardiovascular diseases: we are in the «red» risk zone. RG.RU Rossiyskaya Gazeta. 10/02/2024. URL: https://rg.ru/2024/10/02/serdechno-sosudistye-zabolevaniia-my-prebyvaemv-krasnoj-zone-riska.html (in Russ.)
2. Garanin A. A., Aydumova O. Y., Rubanenko A. O., Bibikova E. G. Digital stethoscope: a new era of auscultation. Digital Diagnostic, 2024, vol. 5, nо. 4, pр. 808–818. DOI: 10.17816/DD632499 (in Russ.)
3. Leng S., Tan R. S., Chai K. T. C. et al. The electronic stethoscope. BioMed Eng OnLine 14, 66 (2015). https://doi.org/10.1186/s12938-015-0056-y
4. Prosvirkina E. V., Sakharchuk A. Yu. Study of the work of artifi cial intelligence in processing audiograms. Strategic vectors of development of science, medicine, digital and educational technologies. Collection of scientifi c articles. Kemerovo, 2024, рр. 197–200. (in Russ.)
5. Trofi mova V. S., Karshieva P. K., Rakhmanenko I. A. Transfer learning method for additional training of neural networks for dataset features in the speaker verifi cation problem. Software systems and computational methods, 2024, no. 3. DOI: 10.7256/2454-0714.2024.3.71630 EDN: XHZCTS URL: htps:/nbpublish.com/library-read-article.php?id=71630 (in Russ.)
6. Pete Warden. Speech Commands: A Dataset for Limited-Vocabulary Speech Recognition. 2018, 1514764800000, CoRR, abs/1804.03209, http://arxiv.org/abs/1804.03209
7. Rabiner L. R., Shafer R. V. Digital processing of speech signals. Translated from English. Edited by M. V. Nazarov and Yu. N. Prokhorov. Moscow, Radio and Communications, 1981, 496 p. (in Russ.)
8. Flach P. Machine learning. The Art and Science of Algorithms that Make Sense of Data. Trans. from English by A. A. Slinkin. Moscow, DMK Press, 2015, 400 p. (in Russ.)
9. Gorshkov Ju. G. Poluchenie i obrabotka mnogourovnevyh chastotno-vremennyh akustokardiogramm [Reception and processing of multilevel time-frequency acoustocardiograms]. Medical equipment, 2013, no. 1, pp. 15–17. (in Russ.)
10. Gorshkov Ju. G. Novye cifrovye tehnologii obrabotki zvukov serdca [New digital technologies for processing heart sounds]. Biomedical radio electronics, 2013, no. 8, pp. 36–40. (in Russ.)
Review
For citations:
Popov D.M., Prosvirkina E.V., Sakharchuk A.Y., Rudnev S.D. Using the Teachable Machine Online Platform to Diagnose Cardiovascular Diseases. Vestnik NSU. Series: Information Technologies. 2025;23(3):57-66. (In Russ.) https://doi.org/10.25205/1818-7900-2025-23-3-57-66


