An Overview of Modern Methods for Restoring Astronomical Images Under Atmospheric Turbulence
https://doi.org/10.25205/1818-7900-2025-23-3-32-43
Abstract
This article presents a review and comparative analysis of modern methods for correcting optical distortions in astrophotography acquired under conditions of atmospheric turbulence. The study investigates the physical and theoretical foundations of distortion formation, including atmospheric turbulence, optical aberrations, and noise inherent to the image acquisition process. The objective of this work is to systematize existing approaches and identify the most effective methods applicable to both amateur and professional astrophotography. The analysis covers image resolution restoration algorithms such as classical deconvolution (including the Richardson–Lucy algorithm and Wiener filtering), blind deconvolution, multi-frame processing, and neural network-based techniques. The results of the comparative analysis demonstrate that multi-frame algorithms and neural network approaches exhibit the highest efficiency under constrained computational resources and incomplete knowledge of the point spread function.
About the Authors
K. Yu. MoskalenkoRussian Federation
Konstantin Yu. Moskalenko, Master’s Student
Novosibirsk
O. D. Pogibelnaya
Russian Federation
Olga D. Pogibelnaya, Bachelor’s Student
Novosibirsk
D. S. Miginsky
Russian Federation
Denis S. Miginsky, Candidate of Science in Physics and Mathematics, Associate Professor
Novosibirsk
References
1. Hampson K. M., Turcotte R., Miller D. T., Kurokawa K., Males J. R., Ji N., Booth M. J. Adaptive optics for high-resolution imaging. Nat Rev Methods Primers, 2021, vol. 1, no. 1, pp. 1–26. DOI: 10.1038/s43586-021-00066-7
2. Al-Hamadani A. H., Zainulabdeen F. Sh., Karam G. S., Nasir E. Y., Al-Saedi A. Effects of atmospheric turbulence on the imaging performance of optical system. AIP Conference Proceedings, 2018, vol. 1968, no. 1, p. 030071. DOI: 10.1063/1.5039258
3. Akbari L., Darudi A., Shomali R. Atmospheric coherence time measurement by modified Fast Defocus method. Optik, 2021, vol. 233, p. 166494. DOI: 10.1016/j.ijleo.2021.166494
4. Niu K., Tian C. Zernike polynomials and their applications. J. Opt., 2022, vol. 24, no. 12, p. 123001. DOI: 10.1088/2040-8986/ac9e08
5. Richardson W. H. Bayesian-Based Iterative Method of Image Restoration. J. Opt. Soc. Am., JOSA, 1972, vol. 62, no. 1, pp. 55–59. DOI: 10.1364/JOSA.62.000055
6. Lucy L. B. An iterative technique for the rectification of observed distributions. The Astronomical Journal, 1974, vol. 79, p. 745. DOI: 10.1086/111605
7. Wiener N. Extrapolation, Interpolation, and Smoothing of Stationary Time Series: With Engineering Applications. The MIT Press, 1949. DOI: 10.7551/mitpress/2946.001.0001
8. Levin A., Weiss Y., Durand F., Freeman W. T. Understanding and evaluating blind deconvolution algorithms. 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL: IEEE, 2009, pp. 1964–1971. DOI: 10.1109/CVPR.2009.5206815
9. Fergus R., Singh B., Hertzmann A., Roweis S. T., Freeman W. T. Removing camera shake from a single photograph. ACM Trans. Graph., 2006, vol. 25, no. 3, pp. 787–794. DOI: 10.1145/1141911.1141956
10. Shan Q., Jia J., Agarwala A. High-quality motion deblurring from a single image. ACM Trans. Graph., 2008, vol. 27, no. 3, pp. 1–10. DOI: 10.1145/1360612.1360672
11. Fried D. L. Probability of getting a lucky short-exposure image through turbulence. J. Opt. Soc. Am., JOSA, 1978, vol. 68, no. 12, pp. 1651–1658. DOI: 10.1364/JOSA.68.001651
12. Law N. M., Mackay C. D., Baldwin J. E. Lucky imaging: high angular resolution imaging in the visible from the ground. A&A, 2006, vol. 446, no. 2, Art. no. 2. DOI: 10.1051/0004-6361:20053695
13. Wilding D., Soloviev O., Pozzi P., Vdovin G., Verhaegen M. Blind multi-frame deconvolution by tangential iterative projections (TIP). Opt. Express, OE, 2017, vol. 25, no. 26, pp. 32305–32322. DOI: 10.1364/OE.25.032305
14. Löfdahl M. G., Hillberg T. Multi-frame blind deconvolution and phase diversity with statistical inclusion of uncorrected high-order modes. A&A, 2022, vol. 668, p. A129. DOI: 10.1051/0004-6361/202244123
15. Schulz T. J. Multiframe blind deconvolution of astronomical images. J. Opt. Soc. Am. A, JOSAA, 1993, vol. 10, no. 5, pp. 1064–1073. DOI: 10.1364/JOSAA.10.001064
16. Yasarla R., Patel V. M. Learning to Restore Images Degraded by Atmospheric Turbulence Using Uncertainty. 2021 IEEE International Conference on Image Processing (ICIP), 2021, pp. 1694–1698. DOI: 10.1109/ICIP42928.2021.9506614
17. Mao Z., Jaiswal A., Wang Z., Chan S. H. Single Frame Atmospheric Turbulence Mitigation: A Benchmark Study and a New Physics-Inspired Transformer Model. Computer Vision – ECCV 2022, S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner, Eds., Cham: Springer Nature Switzerland, 2022, pp. 430–446. DOI: 10.1007/978-3-031-19800-7_25
18. Gopalakrishnan Nair N., Mei K., Patel V. M. A Comparison of Diff erent Atmospheric Turbulence Simulation Methods for Image Restoration. 2022 IEEE International Conference on Image Processing (ICIP), 2022, pp. 3386–3390. DOI: 10.1109/ICIP46576.2022.9897969
Review
For citations:
Moskalenko K.Yu., Pogibelnaya O.D., Miginsky D.S. An Overview of Modern Methods for Restoring Astronomical Images Under Atmospheric Turbulence. Vestnik NSU. Series: Information Technologies. 2025;23(3):32-43. (In Russ.) https://doi.org/10.25205/1818-7900-2025-23-3-32-43


