Development of an Image Preprocessing by Bidth-Search Method for a Pattern Recognition System based on Multi-Agent Neurocognitive Architecture
https://doi.org/10.25205/1818-7900-2023-21-4-46-53
Abstract
In this paper, we consider the problem of image preprocessing for further pattern recognition through the use of a multiagent neurocognitive architecture. The solution to this problem is achieved using the breadth-first search (BFS) method. The article presents algorithmic descriptions of the segmentation method and the image processing method in a multiagent neurocognitive architecture. Experiments were carried out on object recognition in a segmented image based on a multi-agent neurocognitive architecture.
About the Authors
A. Z. EnesRussian Federation
Ahmed Zulfikar Enes, Junior Research Fellow
М. V. Khazhmetov
Russian Federation
Murat V. Khazhmetov, Postgraduate Student
K. Ch. Bzhikhatlov
Russian Federation
Kantemir Ch. Bzhikhatlov, Candidate of Physico-Mathematical Sciences
S. А. Kankulov
Russian Federation
Sultan A. Kankulov, Trainee Researcher
References
1. DeSouza G. N., Kak A. C. Vision for mobile robot navigation: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, vol. 24, № 2, pp. 237–267. DOI: 10.1109/34.982903
2. Davison A. J., Reid I. D., Molton N. D., & Stasse O. MonoSLAM: Real-time single camera SLAM. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, vol. 29, no. 6, pp. 1052–1067. DOI: 10.1109/TPAMI.2007.1049
3. Torralba A., Murphy K. P., Freeman W. T., & Rubin M. A. Context-based vision system for place and object recognition. Paper presented at the Proceedings of the IEEE International Conference on Computer Vision, 2003, pp. 273–280. DOI: 10.1109/iccv.2003.1238354 Retrieved from www.scopus.com
4. Se S., Lowe D., & Little J. Mobile robot localization and mapping with uncertainty using scaleinvariant visual landmarks. International Journal of Robotics Research, 2002, vol. 21, no. 8, pp. 735–758. DOI: 10.1177/027836402761412467
5. Sze V., Chen Y., Yang T., Emer J. S. Efficient Processing of Deep Neural Networks: A Tutorial and Survey. Proceedings of the IEEE, 2017, vol. 105, no. 12, pp. 2295–2329. DOI: 10.1109/JPROC.2017.2761740
6. Tropchenko A. A., Tropchenko A. Yu. Methods of secondary processing and recognition of images. Textbook. St. Petersburg, ITMO University publ., 2015, pp. 12–13. (in Russ.)
7. Nagoev Z. V. Intelligence, or thinking in living and artificial systems [ntellektika, ili myshleniye v zhivykh i iskusstvennykh sistemakh]. Nalchik, Publishing of KBSC RAS, 2013, 213 p. (in Russ.)
8. Nagoev Z., Pshenokova I., Nagoeva O., Sundukov Z. Learning algorithm for an intelligent decision making system based on multi-agent neurocognitive architectures. Cognitive Systems Research, 2021, vol. 66, pp. 82–88. https://doi.org/10.1016/j.cogsys.2020.10.015
9. Li H., Guo L., Wang Y., & Jiang J. Grid pattern recognition in road networks using link graph. Geomatics and Information Science of Wuhan University, 2022, vol. 47, no. 1, pp. 126 132. DOI: 10.13203/j.whugis20190300
10. Du Q., Emelianenko M., Ju L. Convergence of the Lloyd algorithm for computing centroidal Voronoi tessellations. SIAM Journal on Numerical Analysis, 2006, vol. 44, pp. 102–119. DOI: 10.1137/040617364
Review
For citations:
Enes A.Z., Khazhmetov М.V., Bzhikhatlov K.Ch., Kankulov S.А. Development of an Image Preprocessing by Bidth-Search Method for a Pattern Recognition System based on Multi-Agent Neurocognitive Architecture. Vestnik NSU. Series: Information Technologies. 2023;21(4):46-53. (In Russ.) https://doi.org/10.25205/1818-7900-2023-21-4-46-53