Preview

Vestnik NSU. Series: Information Technologies

Advanced search

Development of an Image Preprocessing by Bidth-Search Method for a Pattern Recognition System based on Multi-Agent Neurocognitive Architecture

https://doi.org/10.25205/1818-7900-2023-21-4-46-53

Abstract

In this paper, we consider the problem of image preprocessing for further pattern recognition through the use of a multiagent neurocognitive architecture. The solution to this problem is achieved using the breadth-first search (BFS) method. The article presents algorithmic descriptions of the segmentation method and the image processing method in a multiagent neurocognitive architecture. Experiments were carried out on object recognition in a segmented image based on a multi-agent neurocognitive architecture.

About the Authors

A. Z. Enes
Kabardino-Balkarian Scientific Center of the Russian Academy of Sciences
Russian Federation

Ahmed Zulfikar Enes, Junior Research Fellow



М. V. Khazhmetov
Kabardino-Balkarian Scientific Center of the Russian Academy of Sciences
Russian Federation

Murat V. Khazhmetov, Postgraduate Student 



K. Ch. Bzhikhatlov
Kabardino-Balkarian Scientific Center of the Russian Academy of Sciences
Russian Federation

Kantemir Ch. Bzhikhatlov, Candidate of Physico-Mathematical Sciences 



S. А. Kankulov
Kabardino-Balkarian Scientific Center of the Russian Academy of Sciences
Russian Federation

Sultan A. Kankulov, Trainee Researcher 



References

1. DeSouza G. N., Kak A. C. Vision for mobile robot navigation: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, vol. 24, № 2, pp. 237–267. DOI: 10.1109/34.982903

2. Davison A. J., Reid I. D., Molton N. D., & Stasse O. MonoSLAM: Real-time single camera SLAM. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, vol. 29, no. 6, pp. 1052–1067. DOI: 10.1109/TPAMI.2007.1049

3. Torralba A., Murphy K. P., Freeman W. T., & Rubin M. A. Context-based vision system for place and object recognition. Paper presented at the Proceedings of the IEEE International Conference on Computer Vision, 2003, pp. 273–280. DOI: 10.1109/iccv.2003.1238354 Retrieved from www.scopus.com

4. Se S., Lowe D., & Little J. Mobile robot localization and mapping with uncertainty using scaleinvariant visual landmarks. International Journal of Robotics Research, 2002, vol. 21, no. 8, pp. 735–758. DOI: 10.1177/027836402761412467

5. Sze V., Chen Y., Yang T., Emer J. S. Efficient Processing of Deep Neural Networks: A Tutorial and Survey. Proceedings of the IEEE, 2017, vol. 105, no. 12, pp. 2295–2329. DOI: 10.1109/JPROC.2017.2761740

6. Tropchenko A. A., Tropchenko A. Yu. Methods of secondary processing and recognition of images. Textbook. St. Petersburg, ITMO University publ., 2015, pp. 12–13. (in Russ.)

7. Nagoev Z. V. Intelligence, or thinking in living and artificial systems [ntellektika, ili myshleniye v zhivykh i iskusstvennykh sistemakh]. Nalchik, Publishing of KBSC RAS, 2013, 213 p. (in Russ.)

8. Nagoev Z., Pshenokova I., Nagoeva O., Sundukov Z. Learning algorithm for an intelligent decision making system based on multi-agent neurocognitive architectures. Cognitive Systems Research, 2021, vol. 66, pp. 82–88. https://doi.org/10.1016/j.cogsys.2020.10.015

9. Li H., Guo L., Wang Y., & Jiang J. Grid pattern recognition in road networks using link graph. Geomatics and Information Science of Wuhan University, 2022, vol. 47, no. 1, pp. 126 132. DOI: 10.13203/j.whugis20190300

10. Du Q., Emelianenko M., Ju L. Convergence of the Lloyd algorithm for computing centroidal Voronoi tessellations. SIAM Journal on Numerical Analysis, 2006, vol. 44, pp. 102–119. DOI: 10.1137/040617364


Review

For citations:


Enes A.Z., Khazhmetov М.V., Bzhikhatlov K.Ch., Kankulov S.А. Development of an Image Preprocessing by Bidth-Search Method for a Pattern Recognition System based on Multi-Agent Neurocognitive Architecture. Vestnik NSU. Series: Information Technologies. 2023;21(4):46-53. (In Russ.) https://doi.org/10.25205/1818-7900-2023-21-4-46-53

Views: 142


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-7900 (Print)
ISSN 2410-0420 (Online)