Preview

Vestnik NSU. Series: Information Technologies

Advanced search

Modular Architecture of Advanced Driver Assistance Systems for Effective Traffic Sign Recognition

https://doi.org/10.25205/1818-7900-2023-21-3-56-71

Abstract

Analysis of modern approaches to the implementation of driver assistance systems, as well as the implementation of the architecture of the driver assistance system, aimed at recognizing traffic signs at the maximum distance from it under difficult weather conditions, for early feedback to the driver. The paper considers the main signals used in the implementation and operation of the driver assistance system: data from the car's CAN bus, information from a GPS receiver, video fragments from a digital camera. The presented modular architecture uses the listed data sources for estimating the traffic situation, as well as neural network methods for recognizing traffic signs. The modular architecture of the driver assistance system is presented, which allows notifying the driver about traffic signs. The system is equipped with lane boundary control to alert the driver to signs related to the adjacent carriageway when turning. It has been experimentally proven that the modular architecture of the driver assistance system presented in the paper is not inferior in speed and accuracy to alternative systems, acting as a comprehensive autonomous solution.

About the Authors

I. K. Kharchenko
Tomsk State University of Control Systems and Radioelectronics
Russian Federation

Kharchenko Igor Konstantinovich, Postgraduate Student

Tomsk



I. G. Borovskoy
Tomsk State University of Control Systems and Radioelectronics
Russian Federation

Borovskoy Igor Georgievich, Doctor of Physics and Mathematics

Tomsk



E. А. Shelmina
Tomsk State University of Control Systems and Radioelectronics
Russian Federation

Shelmina Elena Aleksandrovna, Candidate of Physics and Mathematics, Associate Professor

Tomsk

 


References

1. González-Saavedra J. Ph., Figueroa M., Céspedes S., Montejo-Sánchez S. Survey of Cooperative Advanced Driver Assistance Systems: From a Holistic and Systemic Vision // Sensors. 2022. Vol. 22 (8). P. 3040–3080. https://doi.org/10.3390/s22083040

2. Xing Y., Lv C., Wang H., Wang H., Ai Y., Cao D., et.al. Driver Lane Change Intention Inference for Intelligent Vehicles: Framework, Survey, and Challenges // IEEE Transactions on Vehicular Technology. 2019. Vol. 68 (5). P./ 4377–4390. https://doi.org/10.1109/TVT.2019.2903299

3. Wang Z., Wu Y., Niu Q. Multi-Sensor Fusion in Automated Driving: A Survey // IEEE Access. 2020. Vol. 8. P. 2847–2868. http://dx.doi.org/10.1109/ACCESS.2019.2962554

4. Yanovsky F. J. Millimeter Wave Technology in Wireless PAN, LAN, and MAN. Sebastopol, CA: Auerbach Publications CRC Press, 2008. 448 p.

5. De-Las-Heras G., Sánchez-Soriano J., Puertas E. Advanced Driver Assistance Systems (ADAS) Based on Machine Learning Techniques for the Detection and Transcription of Variable Message Signs on Roads // Sensors. 2021. Vol. 21(17). P. 5866‑5880. https://doi.org/10.3390/s21175866

6. Lin T.-Y., Goyal P., Girshick R., He K., Dollár P. Focal Loss for Dense Object Detection // IEEE Transactions on Pattern Analysis and Machine Intelligence. 2020. Vol. 42(2). P. 318‑327. https://doi.org/10.1109/TPAMI.2018.2858826

7. Robby G. A., Tandra A., Susanto I., Harefa J., Chowanda A. Implementation of Optical Character Recognition using Tesseract with the Javanese Script Target in Android Application // Procedia Computer Science. 2019. Vol. 157. P. 499‑505. https://doi.org/10.1016/j.procs.2019.09.006

8. Lindemann B., Müller T., Vietz H., Jazdi N., Weyrich M. A survey on long short-term memory networks for time series prediction // Procedia CIRP. 2021. Vol. 99. P. 650‑655. https://doi.org/10.1016/j.procir.2021.03.088

9. Temel D., Alshawi T., Chen M.-H., AlRegib G. CURE-TSD: Challenging unreal and real environments for traffic sign detection // IEEE Dataport. URL: https://ieee-dataport.org/openaccess/cure-tsd-challenging-unreal-and-real-environment-traffic-sign-detection (дата обращения 07.07.2023).

10. Emelyanov, C. O., Ivanova, A. A., Shvets, E. A., Nikolaev, D. P. Data agumentation methods of training datasets for image classification task. Sensorniye sistemy = Sensor systems. 2018, vol. 32(3), pp. 236‑245. (In Russ.) Available from: https://elibrary.ru/item.asp?doi=10.1134/S0235009218030058 [Accessed 2nd July 2023]

11. Ahmed S., Kamal U., Hasan M. K. DFR-TSD: A Deep Learning Based Framework for Robust Traffic Sign Detection Under Challenging Weather Conditions // IEEE Transactions on Intelligent Transportation Systems. 2021. Vol. 23(6). P. 5150–5162. https://doi.org/10.1109/TITS.2020.3048878

12. Kharchenko, I. K., Borovskoy, I. G., Shelmina, E. A. Usage of convolutional neural network

13. nsemble for traffic sign recognition. Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika = Bulletin of Tomsk State University. Management, Computer Engineering and Informatics. Tomsk State University Journal of Control and Computer Science. 2022, vol. 61, pp. 88–96. (In Russ.) DOI 10.17223/19988605/61/9

14. Abdennour N., Ouni T., Ben Amor N. Driver identification using only the CAN-Bus vehicle data through an RCN deep learning approach // Robotics and Autonomous Systems. 2021. Vol. 136. https://doi.org/10.1016/j.robot.2020.103707

15. Zhang J., Wu Z., Li F., Xie C., Ren T., Chen J. et al. A Deep Learning Framework for Driving Behavior Identification on In-Vehicle CAN-BUS Sensor Data // Sensors. 2019. Vol. 19(6). P. 1356‑1373. https://doi.org/10.3390/s19061356

16. Kubiš M., Beňo P. Realization of communication via the CAN bus // Transportation Research Procedia. 2019. Vol. 40. P. 332–337. https://doi.org/10.1016/j.trpro.2019.07.049

17. Zhou A., Li Z., Shen Y. Anomaly Detection of CAN Bus Messages Using a Deep Neural Network for Autonomous Vehicles // Applied Sciences. 2019. Vol. 9(15). P. 3174‑3186. https://doi.org/10.3390/app9153174

18. Khanam F., Munmun F. A., Ritu N. A., Saha A. K., Mridha M. F. Text to Speech Synthesis: A Systematic Review, Deep Learning Based Architecture and Future Research Direction // Journal of Advances in Information Technology. 2022. Vol. 13(5). P. 398‑412. http://dx.doi.org/10.12720/jait.13.5.398-412

19. Simonyan K., Zisserman A. Very Deep Convolutional Networks for Large-Scale Image Recognition // 3rd International Conference on Learning Representations. 2015. P. 1–14 URL: https://arxiv.org/abs/1409.1556v6 (02.06.2023). https://doi.org/10.48550/arXiv.1409.1556

20. Lucy C., Yu M., Melat K. W., Diarra B., Daniel M. G., Jessilyn D. Does deidentification of data from wearable devices give us a false sense of security? A systematic review // The Lancet Digital Health. 2023. Vol. 5(4). P. 239‑247. https://doi.org/10.1016/S2589-7500(22)00234-5

21. Smith M., Miller S. Biometric Identifcation, Law and Ethics. Canberra, A


Review

For citations:


Kharchenko I.K., Borovskoy I.G., Shelmina E.А. Modular Architecture of Advanced Driver Assistance Systems for Effective Traffic Sign Recognition. Vestnik NSU. Series: Information Technologies. 2023;21(3):56-71. (In Russ.) https://doi.org/10.25205/1818-7900-2023-21-3-56-71

Views: 106


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-7900 (Print)
ISSN 2410-0420 (Online)