Preview

Vestnik NSU. Series: Information Technologies

Advanced search

Software and Algorithmic Tools Development for Processing and Interpretation Electrotomography Monitoring Data

https://doi.org/10.25205/1818-7900-2023-21-3-32-45

Abstract

Year by year researchers use the method of electrotomography more extensively to solve a wide variety of tasks. For example, electrotomography can be applied in archaeological excavations, in the tasks of controlling mine tailings, in engineering surveys, to study fault structures, for monitoring studies in seismically active areas. It is necessary to perform sufficiently long-term observations to form approaches in solving the problem of predicting seismic events. This leads to the need to consider large arrays of initial data and interpret a significant amount of field data. In this regard, it is important to use and develop modern computer tools for processing and interpreting the results of regular observations. The purpose of this work is to modernize and develop the Direct-Inverse-Solver (DiInSo) software package for solving direct and inverse problems for processing, interpreting and analyzing electrotomography monitoring data.

About the Authors

N. N. Nevedrova
Trofimuk Institute of Petroleum Geology and Geophysics SB RAS; Novosibirsk State University
Russian Federation

Nina N. Nevedrova, Doctor in Geology and Mineralogy, Chief Researcher

Novosibirsk



A. E. Shalaginov
Trofimuk Institute of Petroleum Geology and Geophysics SB RAS; Novosibirsk State Technical University
Russian Federation

Aleksandr E. Shalaginov, PhD, Senior Researcher

Novosibirsk



A. V. Marinenko
Trofimuk Institute of Petroleum Geology and Geophysics SB RAS
Russian Federation

Arkadii V. Marinenko, PhD, Researche

Novosibirsk



I. O. Shaparenko
Trofimuk Institute of Petroleum Geology and Geophysics SB RAS; Novosibirsk State University
Russian Federation

Ilya O. Shaparenko, Junior Researcher

Novosibirsk



References

1. Dobrovol’skii I. P. Teoriya podgotovki tektonicheskogo zemletryaseniya. M.: IFZ AN SSR, 1991. 217 p.

2. Dobrovol’skii I. P. O probleme prognoza tektonicheskogo zemletryaseniya [On the problem of forecasting a tectonic earthquake]. Geofizicheskie issledovaniya, 2010, vol. 11, № 1, p. 35–46.

3. Mogi K. Predskazanie zemletryasenii. M.: Mir, 1988.

4. Rybin A. K., Bataleva E. A., Aleksandrov P. N., Nepeina K. S. Ehlektromagnitnye issledovaniya sovremennykh geodinamicheskikh protsessov litosfery oblastei vnutrikontinental’noi orogenii, na primere Tyan’-Shanya // Fizika Zemli, 2022, vol. 68, № 5, p. 98–115

5. Sidorin A.YA. Vydayushcheesya dostizhenie Rossiiskoi akademii nauk: uspeshnyi prognoz zemletryaseniya v Yaponii 11 marta 2011 g. Geofizicheskie protsessy i biosfera, 2011, vol. 10, № 1, p. 5.

6. Du X. B. Two types of changes in apparent resistivity in earthquake prediction. Science China Earth Sciences, January 2011, vol. 54, iss. 1, pp. 145–156. DOI: 10.1007/s11430-010-4031-y.

7. Du X.B., An Z., Yan R., Ye Q., Fan Y., et. al. Changes in Apparent Resistivity in the Late Preparation Stages of Strong Earthquakes in Earthquake. Research and Analysis in Statistical Studies, Observations and Planning, Dr Sebastiano D’Amico (Ed.), 2012, pp. 199–220.

8. Konstantaras A., Fouskitakis, G. N., Makris, J. P., and Vallianatos, F. Stochastic analysis of geo-electric field singularities as seismically correlated candidates. Nat. Hazards Earth Syst. Sci., 2008, 8, pp. 1451–1462, DOI: 10.5194/nhess-8-1451-200

9. Zhao Y. L. Geoelectric Precursors to Strong Earthquakes in China. Tectonophysics, 1994, vol. 233, no. 1, 2, pp. 99–113.

10. Ma Li, Ghen J., Chen Q. Features of Precursor Field before and after Datong Yangao Earthquake Swarm. J. Earth. Pred. Res., 1995, vol. 4, no. 1, pp. 71–76.

11. Du X.-B., Li N., Ye Q., Ma Z.-H., Yan R. A Possible Reason for the Anisotropic Changes in Apparent Resistivity Near the Focal Region of Strong Earthquake. Chinese Journal of Geophysics, 2007, vol. 50, № 6, pp. 1555–1565.

12. Xie T., Lu J., Ren Y. and Zhao M. Analysis on Apparent Resistivity variations of Garzê Station before the 2013 Lushan MS7 Earthquake. Earthquake research in China, 2014, vol. 3, pp. 388–402.

13. Wang K., Qi-Fu Chen, Shihong Sun, and Andong Wang. Predicting the 1975 Haicheng Earthquake. Bulletin of the Seismological Society of America, 2006, vol. 96, pp. 757–795.

14. Svetov B. S. Ehlektromagnitnyi monitoring seismotektonicheskikh protsessov [Electromagnetic monitoring of seismotectonic processes]. Izvestiya vuzov. Geologiya i razvedka, 1982, № 2, p. 9–115.

15. Sobolev G. A. Osnovy prognoza zemletryasenii [Earthquake Prediction Basics]. M.: Nauka, 1993, 313 p.

16. Sobolev G A. Fizika zemletryasenii i predvestniki [Earthquake physics and precursors]. M.: Nauka, 2003, 270 p.

17. Sobolev G. A. Metodologiya, rezul’taty i problemy prognoza zemletryasenii [Methodology, results and problems of earthquake forecasting]. Vestnik Rossiiskoi Akademii Nauk, 2015, vol 85, № 3, pp. 203–209.

18. Bragin V. D. Aktivnyi ehlektromagnitnyi monitoring territorii Bishkekskogo prognosticheskogo poligona[Active electromagnetic monitoring of the territory of the Bishkek prognostic test site]: dis. kand. fiz.-mat. Nauk. M., 2001. 135 p.

19. Idarmachev SH. G., Aliev M. M. Variatsii kazhushchegosya soprotivleniya gornykh porod v period Kizilyurtovskogo zemletryaseniya 1999 g. v Dagestane [Variations in apparent resistivity of rocks during the 1999 Kizilyurt earthquake in Dagestan] // Geofizicheskie issledovaniya, 2013, vol. 14, № 2, pp. 15–25.

20. Bataleva E. A., Mukhamadeeva V. A. Kompleksnyi ehlektromagnitnyi monitoring geodinamicheskikh protsessov Severnogo Tyan’-Shanya (Bishkekskii geodinamicheskii poligon) [Integrated electromagnetic monitoring of geodynamic processes in the Northern Tien Shan (Bishkek geodynamic test site)] // Geodynamics & Tectonophysics, 2018, № 2, p. 461–487. DOI: 10.5800/GT-2018-9-2-0356

21. Rymarczyk T., Kłosowski G., Tchórzewski P., Cieplak T., Kozłowski E. Area monitoring using the ERT method with multisensor electrodes. Przegląd Elektrotechniczny, 2019, vol. 95 (1), pp. 153–156.

22. Nevedrova N. N., Shalaginov A. E. Monitoring ehlektromagnitnykh parametrov v zone seismicheskoi aktivizatsii Gornogo Altaya [Monitoring of electromagnetic parameters in the zone of seismic activity in Gorny Altai]. Geofizika, 2015, № 1, p. 31–40.

23. Nevedrova N. N., Sanchaa A. M., Shalaginov A. E., Babushkin S. M. Electromagnetic monitoring in the region of seismic activization (on the Gorny Altai (Russia) example) // Geodesy and Geodynamics, 2019, vol. 10 (6), pp. 460–470. https://DOI.org/10.1016/j.geog.2019.06.001

24. Shaparenko I. O., Nevedrova N. N. Monitoring razlomnykh zon metodom ehlektrotomografii (na primere Gornogo Altaya) [Monitoring of fault zones by electrotomography (on the example of Gorny Altai)]. Problemy geodinamiki i geoehkologii vnutrikontinental’nykh orogenov: Materialy dokladov VII Mezhdunarodnogo simpoziuma, 2018, p. 439–443.

25. Ramachandran K., Tapp B., Rigsby T., Lewallen E. Imaging of fault and fracture controls in the Arbuckle-Simpson aquifer, Southern Oklahoma, USA, through electrical resistivity sounding and tomography methods // International Journal of Geophysics, 2012, pp. 132–142

26. Nevedrova N. N., Sanchaa A. M., Shaparenko I. O. Geoelectrical structure and monitoring in fault zones of Uimon depression in Gorny Altai region using electromagnetic methods // IOP Conference Series: Earth and Environmental Science. IOP Publishing, 2021, vol. 929, № 1, pp. 012–025.

27. Shaparenko I. O., Nevedrova N. N., Marinenko A. V., Surodina I. V. Analiz ehffektivnosti programmnykh kompleksov ehlektrotomografii dlya interpretatsii polevykh dannykh v seismoaktivnykh raionakh (na primere Gornogo Altaya) [Анализ эффективности программных комплексов электротомографии для интерпретации полевых данных в сейсмоактивных районах (на примере Горного Алтая], Geologiya i mineral’no-syr’evye resursy Sibiri, 2023, № 2(54), p. 41–50.

28. Schutze C., Friedel S. and Jacobs F. Detection of three-dimensional transport processes in porous aquifers using geoelectrical quotient tomography. European Journal of Environment and Engineering Geophysics, 2022, №7, p. 3–19.

29. Labrecque D. J. and Yang X. Difference Inversion of ERT Data: a Fast Inversion Method for 3-D in Situ Monitoring. Journal of Environmental and Engineering Geophysics, 2001, vol. 5, pp. 83–90.

30. Deev E. V., Zol’nikov I. D., Turova I. V., Rusanov G. G., Ryapolova Yu. M., Nevedrova N. N., Kotler S. A. Paleozemletryaseniya v Uimonskoi vnutrigornoi vpadine// Geologiya i geofizika, 2018, vol. 59, № 4, pp. 437–452.

31. Deev E. V., Nevedrova N. N., Rusanov G. G., Sanchaa A. M., Babushkin S. M., KrechetovD.V., El’tsov I. N., Zol’nikov I. D. New data on structure of Uimon intermountain basin (Gorny Altai). Geology and mineral resources of Siberia, 2011, №1 (9), pp. 15–23.


Review

For citations:


Nevedrova N.N., Shalaginov A.E., Marinenko A.V., Shaparenko I.O. Software and Algorithmic Tools Development for Processing and Interpretation Electrotomography Monitoring Data. Vestnik NSU. Series: Information Technologies. 2023;21(3):32-45. (In Russ.) https://doi.org/10.25205/1818-7900-2023-21-3-32-45

Views: 132


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-7900 (Print)
ISSN 2410-0420 (Online)