Preview

Vestnik NSU. Series: Information Technologies

Advanced search

IntvalPy — a Python Interval Computation Library

https://doi.org/10.25205/1818-7900-2022-20-4-5-23

Abstract

The article presents the IntvalPy library which implements interval computations in Python. Unlike other existing interval libraries, IntvalPy allows one to work with both classical interval arithmetic and complete Kaucher interval arithmetic. In addition, the library was developed taking into account the IEEE 1788-2015 standard for interval arithmetic on digital computers, which guarantees high accuracy of the results and compatibility with the other existing software products. The top-level functionality of the IntvalPy library implements state-of-the-art methods for recognizing and estimating solution sets for interval linear systems of equations, computing their formal solutions, and visualizing solution sets for interval equations and systems of equations. As an example of the library application, we solve the practically important problem of estimating the parameters of the electrochemical process of the formation of loose metal powder precipitates. Additionally, numerical computation was carried out, as well as qualitative comparisons with other interval libraries, in order to demonstrate the functionality and optimality of implemented interval classes.

About the Authors

A. S. Androsov
Federal Research Center for Information and Computational Technologies
Russian Federation

Artem S. Androsov - postgraduate student.

Novosibirsk



S. P. Shary
Federal Research Center for Information and Computational Technologies
Russian Federation

Sergey P. Shary - Doctor of Sciences (Physics and Mathematics).

Novosibirsk



References

1. Androsov A. S., Shary S. P. The IntvalPy library [Online]. URL: https://github.com/AndrosovAS/intvalpy.

2. Kearfott R. B., Nakao M., Neumaier A., Rump S. M. et al. Standardized notation in interval analysis. Reliable Computing, 2010, vol. 15, no. 1, pp. 70-13.

3. Rump S. M. Verification methods: Rigorous results using floating-point arithmetic. Acta Numerica, 2010, vol. 19, pp. 287-449.

4. Hansen E., Walster G. W. Global Optimization Using Interval Analysis: Revised And Expanded CRC Press; 2nd edition (December 19, 2003). 2003, 728 p.

5. Sharaya I. A. Boundary intervals and visualization of AE-solution sets for interval systems of linear equations. Reliable Computing, 2012, pp. 435-467.

6. Sharaya I. A. Boundary interval method for visualization of polyhedral sets of solutions. Reliable Computing, 2015, vol. 20, pp. 75-103. (in Russ.)

7. Shary S. P. Solvability of interval linear equations and data analysis with uncertainties. Automatics and Telemechanics, 2012, pp. 111-125. (in Russ.).

8. Shary S. P. Strong compatibility in the problem of dependency recovery under interval uncertainty. Reliable Computing, 2017, vol. 22, no. 2, pp. 150-172. (in Russ.).

9. Fiedler M., Nedoma J., Ramik J., Rohn J., Zimmermann K. Linear optimization problems with inexact data Springer Science+Business Media. New York, 2006. 223 p.

10. Shary S. P. Finite-dimensional interval analysis Novosibirsk: Publishing «XYZ», 2022. 654 p. (in Russ.).

11. Neumaier A. Interval methods for systems of equations Cambridge. New York, 1990. 270 p.

12. Stetsyuk P. I. Subgradient methods ralgb5 and ralgb4 for minimizing convex functions. Reliable Computing, 2017, vol. 22, no. 2, pp. 127--149. (in Russ.).

13. Shary S. P. On optimal solution of interval linear equations. SIAM Journal on Numerical Analysis, 1995, pp. 610-630.

14. Sharaya I. A. The IntLinIncR3 package. User's Guide [Online]. 2014. 26 p. URL: http://www.nsc.ru/interval/Programing/MCodes/IntLinIncR3.pdf. (in Russ.)

15. Ostanina T. N., Rudoi V. M., Patrushev A. V., Darintseva A. B., Farlenkov A. S. Modelling the dynamic growth of copper and zinc dendritic deposits under the galvanostatic electrolysis conditions. Journal of Electroanalytical Chemistry, 2015, vol. 750, pp. 9-18.

16. Ostanina T. N., Rudoy V. M., Nikitin V. S., Darintseva A. B., Zalesova O. L., Porotniko- va N. M. Determination of the surface of dendritic electrolytic zinc powders and evaluation of its fractal dimension Russian. Journal of Non-Ferrous Metals, 2017, vol. 57, pp. 47-51.

17. Bazenov A. N., Zhilin S. I., Kumkov S. I., Shary S. P. Processing and analysis of data with interval uncertainty [Online]. 2022, 242 p. URL: http://www.nsc.ru/interval/Library/ApplBooks/InteDataProcessing.pdf. (in Russ.)

18. Kumkov S. I., Nikitin V. S., Ostanina T. N., Rudoy V. M. Interval processing of electrochemical data. Computational and Applied Mathematics, 2020, vol. 380, 7 p.

19. Shary S. P. Graph subdivision methods in interval global optimization. Studies in Computational Intelligence, 2014, vol. 539, pp. 153-170.

20. Taschini S. Interval Arithmetic: Python Implementation and Applications. Proceedings of the 7th Python in Science Conference (SciPy 2008), 2008, pp. 16-22.

21. Hedar A. R., Ahmed A. Studies on metaheuristics for continuous global optimization problems. Kyoto: Kyoto University, 2004. 148 p.

22. Nadezhin D. Yu., Zhilin S. I. JInterval Library: Principles, Development, and Perspectives. Reliable Computing, 2014, vol. 19, no. 3, pp. 229-247.

23. Shary S. P. Interval regularization for imprecise linear algebraic equations [Online]. 2018. 21 p. URL: https://www.researchgate.net/publication/328063512_Interval_regularization_for_imprecise_linear_algebraic_equations.

24. Oettli W., Prager W. Compatibility of approximate solution of linear equations with given error bounds for coefficients and right-hand sides. Numerische Mathematik, 1964, vol. 6, pp. 405-409.

25. Jr D. M., Tortelli L. M., Finger A. F., Loret A. B. KaucherPy: interval package for Kaucher arithmetic. 2019. 12 p.


Review

For citations:


Androsov A.S., Shary S.P. IntvalPy — a Python Interval Computation Library. Vestnik NSU. Series: Information Technologies. 2022;20(4):5-23. (In Russ.) https://doi.org/10.25205/1818-7900-2022-20-4-5-23

Views: 276


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-7900 (Print)
ISSN 2410-0420 (Online)