Preview

Vestnik NSU. Series: Information Technologies

Advanced search

Problem of Modeling and Control of Multi-Dimensional Timeless Processes with Dependent Output Variables

https://doi.org/10.25205/1818-7900-2022-20-2-37-49

Abstract

In this paper, we consider the problems of modeling and controlling multidimensional inertialess systems with delay under nonparametric uncertainty. We are talking about the multidimensional processes which are in conditions where the form of parametric equations for various channels of the object is absent due to lack of a priori information. The main emphasis is placed on the case when the components of the vector of output variables are randomly connected in an unforeseen way. In the case of a stochastic dependence of the output variables, the mathematical description of the object is reduced to a system of implicit equations, the form of which is unknown. Therefore, the main task of modeling is to find the predicted values of output variables from known input variables. When managing a multidimensional object, an important feature is the definition of setting actions. The main thing here is that the setting influences of the control system should not be chosen arbitrarily from the corresponding areas, but depending on the definition of the previous ones. Nonparametric identification and control algorithms for multidimensional systems are proposed. Computational experiments that show the efficiency of using the proposed nonparametric identification and control algorithms are presented.

About the Authors

D. I. Liksonova
Siberian Federal University
Russian Federation

Darya I. Liksonova, Candidate of Technical Sciences, Docent of the Basic Department of Intelligent Control Systems, Institute of Space and Information Technologies

Krasnoyarsk



A. V. Medvedev
Siberian Federal University
Russian Federation

Alexander V. Medvedev, Doctor of Technical Sciences, Professor, Professor of the Department of Information Systems, Institute of Space and Information Technologies

Krasnoyarsk



References

1. Medvedev A. V. Fundamentals of the theory of nonparametric systems. Krasnoyarsk, SibGU im. M.F. Reshetneva Publ., 2018, 732 p.

2. Agafonov E. D., Medvedev A. V., Orlovskaya N. F., Sinyuta V. R., Yareshchenko D. I. Predictive model of the catalytic hydrodewaxing process under conditions of a lack of a priori information. Izd-vo TulGU, 2018, no. 9, p. 456–468 (In Russ.)

3. Medvedev A. V., Mihov E. D., Nepomnyashchiy O. V. Mathematical modeling of H-processes. Zhurnal Sibirskogo federal’nogo universiteta. Series: Matematika i fizika, 2016, vol. 9, no. 3, p. 338–346 (in Russ.). DOI 10.17516/1997-1397-2016-9-3-338-346.

4. Tsypkin Ya. Z. Information theory of identification. Moscow, Nauka Publ., 1995, 336 p.

5. Pupkov K. A., Egupov N. D. Methods of classical and modern theory of automatic control: in 5 volumes. Vol. 2: Statistical dynamics and identification of automatic control systems. Moscow, MGTU im. N.E. Baumana Publ., 2004. 640 p.

6. Tsypkin Ya. Z. Fundamentals of Information Theory of Identification. Moscow, Nauka Publ., 1984, 320 p.

7. Raybman N. S. Identification and evaluation of system parameters. In 3 parts. Part 1. Tbilisi, Metsniereba Publ., 1976, 516 p.

8. Medvedev A. V. Theory of nonparametric systems. General Approach. Vestnik Sib. gos. aerokosmich. un-ta im. akad. M.F. Reshetneva, 2008, vol. 2, no. 3, p. 65–69 (in Russ.).

9. Medvedev A. V. Theory of nonparametric systems. Modeling. Vestnik Sib. gos. aerokosmich. un-ta im. akad. M.F. Reshetneva, 2010, vol. 4, no. 30, p. 4–9 (in Russ.)

10. Denisov M. A., Tereshina A. V., Yareshchenko D. I. Adaptive models for discretecontinuous process. Applied Methods of Statistical Analysis. Statistical Computation and Simulation. Novosibirsk, 2019. p. 299–305 (in Russ.)

11. Tsypkin Ya. Z. Adaptation and learning in automatic systems. Moscow, Nauka Publ., 1968, 400 p.

12. Fel’dbaum A. A. Fundamentals of the theory of optimal automatic systems. Moscow, Fizmatgiz Publ., 1963, 553 p.

13. Pervushin V. F. On Nonparametric Identification of Linear Dynamic Objects. Vestnik Tomskogo gosudarstvennogo universiteta, 2013, vol. 4, no. 25, p. 95–104 (in Russ)

14. Mamyshev R. E. Non-parametric identification using transient responses. Mezhdunarodnyy studencheskiy nauchnyy vestnik, 2021, no. 6. 8 p.

15. Koshkin G.M., Piven I.G. Nonparametric identification of stochastic objects. Khabarovsk, RAN Dal’nevostochnoe otdelenie Publ., 2009, 336 p.

16. Nadaraya E. A. Nonparametric Estimation of Probability Density and Regression Curve. Tbilisi, Izd-vo Tbilisskogo un-ta, 1983, 194 p.

17. Medvedev A. V. Theory of nonparametric systems. Active processes – I. Vestnik Sib. gos. aerokosmich. un-ta im. akad. M.F. Reshetneva, 2011, vol. 4, no. 37, p. 52–58 (in Russ.)

18. Yareshchenko D. I. Some remarks about the assessment of knowledge of university students. Otkrytoe obrazovanie, 2017, vol. 4, p. 66–72 (in Russ.)

19. Eykkhoff P. Fundamentals of Identification of Control Systems. Moscow, Izd-vo «Mir», 1975, 680 p.

20. Medvedev A. V. On the theory of nonparametric control systems. Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychisl. tekhnika i informatika, 2013, no. 1, p. 6–19 (in Russ.)

21. Tereshina A. V., Yareshchenko D. I. On Nonparametric Modeling of Inertialess Systems with Delay. Sibirskiy zhurnal nauki i tekhnologiy, 2018, vol. 19, no. 3, p. 452–461 (in Russ.)

22. Liksonova D. I., Raskina A. V. Nonparametric identification and control algorithms for T-processes. Sibirskiy aerokosmicheskiy zhurnal, 2021, vol. 22, no. 4, p. 600–612 (in Russ.). DOI 10.31772/2712-8970-2021-22-4-600-612.


Review

For citations:


Liksonova D.I., Medvedev A.V. Problem of Modeling and Control of Multi-Dimensional Timeless Processes with Dependent Output Variables. Vestnik NSU. Series: Information Technologies. 2022;20(2):37-49. (In Russ.) https://doi.org/10.25205/1818-7900-2022-20-2-37-49

Views: 163


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-7900 (Print)
ISSN 2410-0420 (Online)