Preview

Vestnik NSU. Series: Information Technologies

Advanced search

Development of a Finite Element Method and Its Application in a CAD

https://doi.org/10.25205/1818-7900-2021-19-4-67-84

Abstract

The presented review of existing domestic and foreign CAD systems showed that the use of FEM in their structure remains quite relevant before other methods in the speed of calculations, sufficient accuracy and software implementation in the CAD structure. To solve the problems of mechanics of elastomers and composites based on them, an overview of the developed domestic software MIRELA+ is presented in more detail. This complex solves many problems of solid mechanics: it has a special focus on solving problems of dissipative heating, parameters of fracture mechanics of massive elastomeric structural elements and thin-layer rubber-metal elements with cracks with changing physical, mechanical and thermophysical parameters under cyclic deformation. Not many of the domestic programs can implement this, and licenses for foreign programs cost tens of thousands of dollars.

This paper also presents methods of discretization by finite elements and an algorithm for constructing a system of resolving equations used in MIRELA+, expressions for determining the components of the coordinate transformation tensor, the strain tensor at the FE centers in a Cartesian coordinate system. Examples of visual representation in a three-dimensional image using a color picture are given, where each shade or color corresponds to a certain range of numerical values of the corresponding function.

About the Authors

A. N. Soloviev
Don State Technical University
Russian Federation

Arkady N. Soloviev, Doctor of Sciences (Physics and Mathematics), Professor

Rostov on Don



R. V. Kirichevsky
V. Dahl Lugansk State University
Ukraine

Rostislav V. Kirichevsky, Candidate of Technical Sciences, Associate Professor

Lugansk



References

1. Sakharov A. S. Modifikatsiya metoda Rittsa dlya rascheta massivnikh tel na osnove polino-mialnykh razlozhenii s uchetom zhestkikh smeshchenii. Soprotivlenie materialov i teoriya sooruzhenii, 1974, no. 23, pp. 61–70. (in Russ.)

2. Sakharov A. S. Momentnaya skhema metoda konechnykh elementov (MSKE) s uchetom zhestkikh smeshchenii. Soprotivlenie materialov i teoriya sooruzhenii, 1974, no 24, pp. 147–156. (in Russ.)

3. Sakharov A. S., Kislooky V. N., Kirichevsky V. V. et al. Metod konechnykh elementov v mekhanike tverdykh tel. Kiev, Vischa shkola, 1982, 480 p. (in Russ.)

4. Kirichevsky R. V., Skrinnikova A. V. Vliyanie approksimiruyushchikh funktsii pri postroenii matritsi zhestkosti konechnogo elementa na skorost skhodimosti MKE. Vestnik Tomsk. gos. un-ta. Matem. i mekh., 2019, no. 57, pp. 26–37. (in Russ.)

5. Vainberg D. V., Sinyavsky A. L. Diskretnii analiz v teorii uprugosti. In: Chislennie metodi rascheta prostranstvennykh konstruktsii. Kiev, KISI Press, 1968, pp. 5–38. (in Russ.)

6. Vainberg D. V. Chislennie metodi v teorii obolochek i plastin. In: Trudi IV Vsesoyuznoi konf. po teorii obolochek i plastin. Erevan, 1966, pp. 206–215. (in Russ.)

7. Voroshko P. P. Variatsionno-raznostnyi metod resheniya trekhmernykh zadach v teorii uprugosti. In: Chislennye metody rascheta prostranstvennykh konstruktsii. Kiev, KISI Press, 1968, pp. 209–215. (in Russ.)

8. Voroshko P. P., Sakharov A. S. Postroenie raznostnykh uravnenii teorii uprugosti i ikh poluchenie na EVM. Soprotivlenie materialov i teoriya sooruzhenii, 1966, no. 4, pp. 174–190. (in Russ.)

9. Ilchenko E. N., Sakharov A. S. O reshenii bolshikh sistem uravnenii pri raschete plastin i obolochek. Soprotivlenie materialov i teoriya sooruzhenii, 1972, no. 16, pp. 259–263. (in Russ.)

10. Geraschenko V. M. Raschet plastinchatykh i korobchatykh system. Chislennye metody rascheta prostranstvennykh konstruktsii. Kiev, KISI Press, 1968, pp. 49–70. (in Russ.)

11. Gotsulyak E. A. et al. Blochnii metod rascheta kombinirovannih system. In: Chislennye metody rascheta prostranstvennykh konstrukysii. Kiev, KISI Press, 1968, pp. 197–208. (in Russ.)

12. Kislooky V. N., Sakharov A. S. Problemno-orientirovannyi vichislitelnyi kompleks proch- nostnykh raschetov prostranstvennykh konstruktsii. In: Organizatsiya i metodika stroitelnogo proektirovaniya s primeneniem vichislitelnoi i organizacionnoi tekhniki. Moscow, CNIPIASS, 1974, iss. 2, pp. 10–14. (in Russ.)

13. Vainberg D. V. et al. Sistema matematicheskogo obespecheniya rascheta prostranstvennykh konstruktsii “Prochnost_1”. In: Organizatsiya i metodika stroitelnogo proektirovaniya. Moscow, CNIPIAS, 1972, iss. 2, pp. 6–10. (in Russ.)

14. Isakhanov G. V. et al. Sistema matematicheskogo obespecheniya prochnostnykh raschetov prostranstvennykh konstruktsii. Problemy prochnosti, 1978, no. 11, pp. 59–61; no. 12, pp. 25–28. (in Russ.)

15. Goncharenko I. E. et al. Problemno-orientirovannye yaziki polzovatelya. Formalnoe opisanie. PROChNOST-75. Sistema matematicheskogo obespecheniya raschetov prostranstvennykh konstruktsii. Kiev, Respublikanskii fond algoritmov i programm AN USSR, 1975, vol. 4, 550 p. (in Russ.)

16. Goncharenko I. E. et al. Problemno-orientirovannye yaziki polzovatelya. Formalnoe opisanie. PROChNOST-75. Sistema matematicheskogo obespecheniya raschetov prostranstvennykh konstruktsii. Kiev, Respublikanskii fond algoritmov i programm AN USSR, 1975, vol. 5, 357 p. (in Russ.)

17. Bestsenny Yu. G. et al. Sistema avtomatizatsii kompleksnogo rascheta prostranstvennykh konstruktsii na ES EVM. In: Kompleksnyi raschet zdanii i sooruzhenii s primeneniem EVM. Kiev, KISI, 1978, pp. 55–58. (in Russ.)

18. Skrim E., Roi Dj. R. Avtomaticheskaya sistema kinematicheskogo analiza. In: Raschet uprugikh konstruktsii s ispolzovaniem EVM. In 2 vols. Trans from Eng., ed. by A. P. Filin. Leningrad, Sudostroenie, 1974, vol. 2, pp. 36–67. (in Russ.)

19. Argyris J. H. ASKA: automatic system for kinematic analysis – a universal system for structural analysis based on the matrix displacement (finite element) method. Nucl. Eng. Des., 1969, no. 2, pp. 441–447.

20. Launay P. et al. The three-dimensional thermoelastic computer code “TITUS”. In: Prepr. 1st Int. Conf. Struct. Mech. React. Technol. Berlin, Amsterdam, Amsterdam e.a., 1971, no. 5, pp. M5-4/1–M5-4/21.

21. Araldsen P. O., Egeland O. General description of SESAM-69 super element structural analysis (Program) modules. European Shipbuilding, 1971, no. 2, pp. 21–35.

22. Egeland O., Araldsen P. O. SESAM-69 – A general purpose finite element method program. Intern. J. of Computers and Structures, 1974, no. 1, pp. 41–68.

23. Araldsen P. O. The application of the superelement method in analysis and design of ship structures and machinery components. In: National Symp. on Computerized structural Analysis and Design. Norway, March, 1972, pp. 2–93.

24. Butler T. G., Michel D. NASTRAN. A summary of the functions and capabilities of the NASA structural analysis computer system. Washington, 1971, 22 p. (NASA SP-260)

25. McNeal R. H., McCormic C. W. The NASTRAN computer program for structural analysis. Comput. and Struct., 1971, no. 1, pp. 32–35.

26. Tocher J. L., Herness E. D. A critical view of NASTRAN. Numerical and Computer Methods in Structural Mechanics, 1973, pp. 151–174.

27. Chumachenko E. N. et al. Matematicheskoe modelirovanie v nelineinoi mehanike (obzor programmnykh kompleksov dlya resheniya zadach modelirovaniya slozhnykh sistem). Moscow, 2009, 23 p. (in Russ.)

28. Faas D., Vance J. M. Interactive deformation through mesh-free stress analysis in virtual re-ality. Mechanical Engineering Conference Presentations, Papers, and Proceedings, 2008, p. 46.

29. Frolov D. Obzor vozmozhnostei ANSYS Mechanical dlya resheniya inzhenernykh zadach. SAPR i grafika, 2010, no. 11. (in Russ.) URL: http://www.caeеxpert.ru/sites/default/files/obzor_vozmozhnostey_ansys_mechanical_dlya_resheniya_inzhenernyh_zadach.pdf.

30. Chigarev A. V., Kravchuk A. S., Smalyuk A. F. ANSYS dlya injenerov. Sprav. posobie. Moscow, Mashinostroenie-1, 2004, 512 p. (in Russ.)

31. Cherpakov A. V. et al. Modelirovanie kolebanii pri impulsnom vozdeistvii mnogosloinoi konstrukcii v komplekse Ansys. Inzhenernyi vestnik Dona, 2019, no. 6. (in Russ.) URL: http://ivdon.ru/ru/magazine/archive/n6y2019/6057.

32. Selyakov M. Yu. Otechestvennie i zarubejnie CAD/SAM sistemi. Uspehi sovremennogo estestvoznaniya, 2011, no. 7, pp. 193–197. (in Russ.)

33. Ivanov S. E. Intellektualnie programmnie kompleksi dlya tekhnicheskoi i tekhnologicheskoi podgotovki proizvodstva. Chast 5: Sistemy inzhenernogo rascheta i analiza detalei i sborochnykh edinits. Uchebno-metodicheskoe posobie. Ed. by D. D. Kulikov. St. Petersburg, SPbGU ITMO, 2011, 48 р. (in Russ.)

34. Pavlov S. CAE – tekhnologii v 2013 godu: obzor dostizhenii i analiz rynka. CAD/CAM/CAE Observer, 2014, no. 4 (88). (in Russ.) URL: http://www.cadcamcae.lv/N88/08-18.pdf.

35. Kalinin A. V., Khvalin A. L. Primenenie metoda konechnykh elementov v sovremennykh sistemakh avtomatizirovannogo proektirovaniya. Geteromagnitnaya mikroelektronika, 2019, no. 26, pp. 41–51. (in Russ.)

36. Gorodetsky A. S. et al. Metod konechnykh elementov: teoriya i chislennaya realizatsiya. Kiev, Fakt, 1997, 137 p. (in Russ.)

37. Kirichevsky R. V. Chislennoe modelirovanie temperaturnykh polei dissipativnogo razogreva konstruktsii iz elastomerov s treschinami. Kiev, Naukova Dumka, 1998, 120 p. (in Russ.)

38. Mounir H., Nizar A., Borhen L., Benamara A., Deneux D. FEM Simulation Based on CAD Model Simplification: A Comparison Study between the Hybrid Method and the Technique Using a Removing Details. Design and Modeling of Mechanical Systems, 2013, pp. 587–596. DOI 10.1007/978-3-642-37143-1_70

39. Gorodetsky D. A. et al. Programmnii kompleks LIRA-SAPR 2013. Uchebnoe posobie. Kiev, Moscow, Elektronnoe izdanie, 2013, 376 р. (in Russ.)

40. Mezhuev V., Lavrik V., Ravi S. Development and application of the problem-oriented lan-guage FORTU for the design of non-standard mechanical constructions. Journal of the Serbian Society for Computational Mechanics, 2015, no. 9 (2), рр. 1–9. DOI 10.5937/jsscm1502001M

41. Kirichevsky V. V. et al. Metod konechnykh elementov v vichislitelnom komplekse “MІRE- LA+”. Kiev, Naukova Dumka, 2005, 403 p. (in Russ.)

42. Kirichevsky V. V. et al. Razvitie metoda konechnykh elementov i ego primenenie v SAPR. Vestnik Zaporozhskogo nats. un-ta. Fiz.-mat. nauki., 2006, no. 1, pp. 38–56. (in Russ.)


Review

For citations:


Soloviev A.N., Kirichevsky R.V. Development of a Finite Element Method and Its Application in a CAD. Vestnik NSU. Series: Information Technologies. 2021;19(4):67-84. (In Russ.) https://doi.org/10.25205/1818-7900-2021-19-4-67-84

Views: 174


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-7900 (Print)
ISSN 2410-0420 (Online)