Preview

Vestnik NSU. Series: Information Technologies

Advanced search

SLAM in Duckietown Simulator Using the OpenVSLAM Framework

https://doi.org/10.25205/1818-7900-2021-19-4-36-49

Abstract

The article is devoted to evaluating the applicability of SLAM frameworks for the task of mobile robots of the Duckietown project. The paper provides a comparative analysis of existing SLAM algorithms and frameworks and selects frameworks taking into account all the constraints imposed by the project robots. The practical results of testing OpenVSLAM framework on the Duckietown environment and Duckietown simulator data are presented.

About the Authors

A. D. Devyatovskaya
Novosibirsk State University
Russian Federation

Alexandra D. Devyatovskaya, Bachelor Student

Novosibirsk



N. E. Biryuchkov
Novosibirsk State University
Russian Federation

Nikita E. Biryuchkov, Bachelor Student

Novosibirsk



T. V. Liakh
Novosibirsk State University
Russian Federation

Tatyana V. Liakh, Candidate of Sciences (Engineering)

Novosibirsk



K. V. Chaika
Saint Petersburg Electrotechnical University; Mobile Robot Algorithms Laboratory JetBrains Research
Russian Federation

Konstantin V. Chaika, Post-Graduate Student

St. Petersburg



References

1. Lyakh T. V., Zyubin V. E., Garanina N. O. Automated verification of control algorithms for complex technological objects on software simulators. Vestnik NSU. Series: Information Tech-nology, 2018, vol. 16, no. 4, pp. 85–94. (in Russ.)

2. Malyshev A. G., Polygalov A. S., Alyamkin S. A. Automatic tagging of clothing images. Vestnik NSU. Series: Information Technology, 2020, vol. 18, no. 2, pp. 54–61. DOI 10.25205/1818-7900-2020-18-2-54-61

3. Giorgio Grisetti, Cyrill Stachniss, and Wolfram Burgard. Non-linear Constraint Network Optimization for Efficient Map Learning. IEEE Transactions on Intelligent Transportation Systems, 2009, vol. 10, no. 3, pp. 428–439.

4. Raúl Mur-Artal, and Juan D. Tardós. ORB-SLAM2: an Open-Source SLAM System for Monocular, Stereo and RGB-D Cameras. In: ArXiv preprint arXiv:1610.06475, 2016.

5. Jakob Engel, Prof. Vladlen Koltun, Prof. Daniel Cremers. DSO: Direct Sparse Odometry. In: ArXiv preprint arXiv:1610.06475, 2017.

6. Kin Leong Ho, Paul Newman. Loop closure detection in SLAM by combining visual and spatial appearance. Robotics Auton. Syst., 2006, vol. 54, pp. 740–749.

7. Baichuan Huang, Jun Zhao, Jingbin Liu. A Survey of Simultaneous Localization and Map-ping with an Envision in 6G Wireless Networks. In: arXiv:1909.05214v2, 2019.

8. Michael Kaess, Ananth Ranganathan and Frank Dellaert. iSAM: Incremental Smoothing and Mapping. IEEE Transactions on Robotics (TRO), 2008, vol. 24, no. 6, pp. 1365–1378.

9. Giorgio Grisetti, Cyrill Stachniss, and Wolfram Burgard. Improved Techniques for Grid Mapping with Rao-Blackwellized Particle Filters. IEEE Transactions on Robotics, 2007, vol. 23, pp. 34–46.

10. Hess W., Kohler D., Rapp H., and Andor D. Real-Time Loop Closure in 2D LIDAR SLAM. In: Robotics and Automation (ICRA), IEEE International Conference, 2016, pp. 1271–1278.

11. Tiar R., Lakrouf M., and Azouaoui O. Fast ICP-SLAM for a Bi-Steerable Mobile Robot in Large Environments. In: IEEE International Workshop of Electronics, Control, Measurement, Signals and their Application to Mechatronics (ECMSM), 2015, pp. 1–6.

12. Tonghui Wang, Guoyun Lv, Shikai Wan, gHaili Li, Baicen Lu SIFT Based Monocular SLAM with GPU Accelerated. CHINACOM Springer, 2018. DOI 10.1007/978-3-319-78139-6_2

13. Kurt Konolige, Giorgio Grisetti, Rainer Kummerle, Wolfram Burgard, Benson Limket-kai, and Regis Vincent. Efficient sparse pose adjustment for 2d mapping. In: IEEE / RSJ In-ternational Conference on Intelligent Robots and Systems, 2010, pp. 22–29.

14. Stefan Kohlbrecher, Oskar Von Stryk, Johannes Meyer, and UweKlingauf. A flexible and scalable slam system with full 3d motion estimation. In: IEEE International Symposium on Safety, Security, and Rescue Robotics, 2011, pp. 155–160.

15. Luca Carlone, Rosario Aragues, Jos ´e A Castellanos, and Basilio Bona. A linear approxi-mation for graph-based simultaneous localization and mapping. Robotics: Science and Systems, 2012, no. 7, pp. 41–48.

16. Steux B. and Hamzaoui O. A slam algorithm in less than 200 lines c-language program. In: Proc. of the Control AutomationRobotics & Vision (ICARCV). Singapore, 2010, pp. 7–10.

17. Baichuan Huang, Jun Zhao, Jingbin Liu A Survey of Simultaneous Localization and Map-ping. In: ArXiv:abs/1909.05214, 2019.


Review

For citations:


Devyatovskaya A.D., Biryuchkov N.E., Liakh T.V., Chaika K.V. SLAM in Duckietown Simulator Using the OpenVSLAM Framework. Vestnik NSU. Series: Information Technologies. 2021;19(4):36-49. (In Russ.) https://doi.org/10.25205/1818-7900-2021-19-4-36-49

Views: 164


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-7900 (Print)
ISSN 2410-0420 (Online)