Preview

Vestnik NSU. Series: Information Technologies

Advanced search

Building Service Compositions Based on data on Use of Services by Users

https://doi.org/10.25205/1818-7900-2021-19-2-115-130

Abstract

The automatic service composition is discussed in the article. The method is proposed for building the service composition based on the processing of statistical data on individual applying services (tasks) by users. The method is based on linking tasks to each other, determining data dependencies, parameters of services whose values are rigidly set by the composition of services, and parameters whose values can be changed by the user are highlighted. Service compositions are built in the form of a directed graph of DAG. The methods have been developed for reducing the set of obtained service compositions, which allow us to highlight useful ones and rank them by degree of use. In particular, equivalent service compositions based on isomorphism of DAG graphs are determined, trivial ones are discarded, and only compositions that lead to the published result are left behind.

About the Authors

R. K. Fedorov
Matrosov Institute for System Dynamics and Control Theory SB RAS
Russian Federation

Roman K. Fedorov - Senior Researcher, V. M. Matrosov Institute of System Dynamics and Control Theory SB RAS.

Irkutsk.



I. V. Bychkov
Matrosov Institute for System Dynamics and Control Theory SB RAS
Russian Federation

Igor V. Bychkov - Doctor of Technical Sciences, Academician of the Russian Academy of Sciences, Director, V. M. Matrosov Institute of System Dynamics and Control Theory SB RAS.

Irkutsk.



G. M. Rugnikov
Matrosov Institute for System Dynamics and Control Theory SB RAS
Russian Federation

Gennady M. Ruzhnikov - Doctor of Technical Sciences, Head of the Department, V. M. Matrosov Institute of System Dynamics and Control Theory SB RAS.

Irkutsk.



References

1. Grimm S., Abecker A., Volker J., Studer R. Ontologies and the Semantic Web. Handbook of semantic web technologies: foundations and technologies, 2011, vol. 1, p. 507-579.

2. Schut P. OpenGIS ® Web Processing Service. Open Geospatial Consortium, 2007, no. 6, p. 1-3.

3. Pautasso C. RESTful Web service composition with BPEL for REST. Data knowledge, 2009, vol. 68, no. 9, p. 851-866.

4. Hoffmann J., Weber I. Web Service Composition. In: Encyclopedia of Social Network Analysis and Mining. Springer-Verlag, 2014.

5. Deelman E., Vahi K., Juve G. Pegasus, a workflow management system for science automation. Future Generation Computer Systems, 2015, vol. 46, p. 17-35.

6. Ludascher B., Altintas C., Berkley C., Higgins D., Jaeger E., Matthew J., Edward A. L., Tao J., Zhao Y. Scientific Workflow Management and the Kepler System. Special Issue: Workflow in Grid Systems. Concurrency and Computation: Practice & Experience, 2006, vol. 18 (10), p. 1039-1065.

7. Wilde M., Hategan M., Wozniak J. M. Swift: A language for distributed parallel scripting. Parallel Computing, 2011, vol. 37 (9), p. 633-652.

8. Berthold M. R., Cebron N., Dill F. The konstanz information miner. SIGKDD Explorations, 2009, no. 11, p. 26-31.

9. Wolstencroft K., Haines R., Fellows D. The Taverna workflow suite: designing and executing workflows of Web Services on the desktop, web or in the cloud. Nucleic Acids Research, 2013, vol. 41 (W1), p. 557-561.

10. Blankenberg D., Kuster G. V., Coraor N. Galaxy: A Web-Based Genome Analysis Tool for Experimentalists. Wiley, 2010.

11. Simmhan Y., Barga R., Ingen C. Building the trident scientific workflow workbench for data management in the cloud. In: Advanced Engineering Computing and Applications in Sciences (ADVCOMP), 2009. DOI 10.1109/ADVCOMP.2009.14

12. Churches D., Gombas G., Harrison A. Programming scientific and distributed workflow with Triana services: Research articles. Concurrency and Computation: Practice and Experience, 2006, vol. 18 (10), p. 1021-1037.

13. Smirnov S., Sukhoroslov O., Volkov S. Integration and Combined Use of Distributed Computing Resources with Everest. Procedia Computer Science, 2016, vol. 101, p. 359-368.

14. Boukhanovsky A. V., Vasilev V. N., Vinogradov V. N., Smirnov D. Y., Sukhorukov S. A., Yapparov T. G. CLAVIRE: Perspective Technology for Second Generation Cloud Computing. Priborostroenie, 2011, vol. 54, no. 10, p. 7-14.

15. Chen N. C., Di L. P., Yu G. N., Gong J. Y. Geo-processing workflow driven wildfire hot pixel detection under sensor web environment. Computers & geosciences, 2010, vol. 36, no. 3, p. 362-372.

16. Kwok Y.-K., Ahmad I. Static scheduling algorithms for allocating directed task graphs to multiprocessors. ACM Computing Surveys, 1999, vol. 31, no. 4, p. 406-471.

17. Xie G., Li R., Xiao X., Chen Y. A High-Performance DAG Task Scheduling Algorithm for Heterogeneous Networked Embedded Systems. In: Proc. of IEEE 28th International Conference Advanced Information Networking and Applications, 2014, p. 1011-1016.

18. Zhi-Wei H., Cheng-Zhi Q., A-Xing Z., Peng L., Yi-Jie W., Yun-Qiang Z. From Manual to Intelligent: A Review of Input Data Preparation Methods for Geographic Modeling. ISPRS In ternational journal of geo-information, 2019, vol. 8, no. 9, article 376. DOI 10.3390/ijgi8090376

19. Di L., Zhao P., Yang W., Yue P. Ontology-Driven Automatic Geospatial-Processing Modeling Based on Web-Service Chaining. In: Proceedings of the Sixth Annual NASA Earth Science Technology Conference. College Park, MD, USA, 2006, p. 27-29.

20. Zhao P., Di L., Yu G., Yue P., Wei Y., Yang W. Semantic Web-based geospatial knowledge transformation. Computers & Geosciences, 2009, no. 35, p. 798-808.

21. Scheider S., Ballatore A. Semantic typing of linked geoprocessing workflows. International Journal of Digital Earth, 2017, vol. 11, p. 113-138.

22. Jiang J., Zhu A.X., Qin C.Z., Zhu T., Liu J., Du F., Liu J., Zhang G., An Y. CyberSoLIM: A cyber platform for digital soil mapping. Geoderma, 2016, no. 263, p. 234-243.

23. Lutz M., Lucchi R., Friis-Christensen A., Ostlander N. A Rule-Based Description Framework for the Composition of Geographic Information Services. In: Proceedings of the International Conference on GeoSpatial Sematics. Mexico City, Mexico, 2007, p. 114-127.

24. Lutz M. Ontology-based descriptions for semantic discovery and composition of geoprocessing services. GeoInformatica, 2007, vol. 11, p. 1-36.

25. Lutz M., Lucchi R., Friis-Christensen A., Ostlander N. A Rule-Based Description Framework for the Composition of Geographic Information Services. In: Proceedings of the International Conference on GeoSpatial Sematics. Mexico City, Mexico, 2007, p. 114-127.

26. Yue P., Di L., Yang W., Yu G., Zhao P., Gong J. Semantic Web Services-based process planning for earth science applications. International Journal of Geographical Information Science, 2009, vol. 23, p. 1139-1163.

27. Farnaghi M., Mansourian A. Automatic composition of WSMO based geospatial semantic web services using artificial intelligence planning. Journal of Spatial Science, 2013, vol. 58, p. 235-250.

28. Martin D., Burstein M., Hobbs J., Lassila O., McDermott D., McIlraith S., Narayanan S., Paolucci M., Parsia B., Payne T. OWL-S: Semantic markup for web services. W3C Member Submission, 2004.

29. Roman D., Keller U., Lausen H., Bruijn J.D., Stollberg M., Polleres A., Feier C., Bussler C., Fensel D. Web Service Modeling Ontology. Applied ontology, 2005, no. 1, p. 77-106.

30. Li H., Zhu Q., Yang X., Xu L. Geo-information processing service composition for concurrent tasks: A QoS-aware game theory approach. Computers & Geosciences, 2012, vol. 47, p. 46-59.

31. Yue P., Tan Z., Zhang M. GeoQoS: Delivering Quality of Services on the Geoprocessing Web. In: Proceedings of the OSGeo's European Conference on Free and Open Source Software for Geospatial (FOSS4G-Europe 2014). Bremen, Germany, 2014.

32. Fedorov R. K., Bychkov I. V., Shumilov A. S., Ruzhnikov G. M. System for planning and executing web service compositions in a heterogeneous dynamic environment. Computational technologies, 2016, vol. 21, no. 6, p. 18-35.

33. Gorodnichev M. A., Komissarov A. V., Mozhina A. V., Prochkin P. V., Rudych P. D., Yurchenko A. V. Information Models and Project Solutions for the Ecclesia Research Data Storing and Processing System. Vestnik NSU. Series: Information Technologies, 2018, vol. 16, no. 3, p. 87-104. (in Russ.)

34. Linoff G. S., Berry M. J. A. Data Mining Techniques: For Marketing, Sales, and Customer Relationship Management. 3rd ed. John Wiley & Sons, 2004. 643 p.


Review

For citations:


Fedorov R.K., Bychkov I.V., Rugnikov G.M. Building Service Compositions Based on data on Use of Services by Users. Vestnik NSU. Series: Information Technologies. 2021;19(2):115-130. (In Russ.) https://doi.org/10.25205/1818-7900-2021-19-2-115-130

Views: 150


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-7900 (Print)
ISSN 2410-0420 (Online)