Preview

Vestnik NSU. Series: Information Technologies

Advanced search

Prediction Model of Temperature of Cast Billet Based on Its Heating Retrospection Using Boosting “Random Forest” Structure

https://doi.org/10.25205/1818-7900-2020-18-4-11-27

Abstract

The scope of this research is the prediction of a cast billet surface temperature, which it will have in the rolling mill after the heating process. The main problem is that such a prediction is needed before the cast billet will really leave the furnace. In many cases, the boundary value problem of the heat transfer, particularly the differential equations of the transient heat conduction, is used to solve this problem. But in this research an alternative data-driven approach is proposed, which is based on a model of the dependence of the billet temperature on the retrospection of its heating in the continuous furnace. Such a model is developed as a result of the analysis of the data from the furnace control system. Such data from the real furnace were collected and stored in the data warehouse. Their exploratory analysis was conducted. All data were splitted into training, testing and validation subsets. As a part of this research, the regression model previously developed by the authors was also validated. It seemed to be overfitted (the error on the test set was significantly higher than the one on the training set). To overcome this disadvantage, an alternative method to develop the required data-based model is proposed by authors on the basis of the Boosting and Bagging algorithms. They belong to the machine learning field. As a result of the experiments with the bagging and boosting, the required model structure was chosen as a “Random Forest” with special class of the regression trees known as DART (Dropout Adaptive Regression Trees). Based on a significant number of experiments with that model, the two confidence intervals of the temperature prediction were found: 68 % and 95 % ones. The mean value of the temperature prediction error was estimated as ~ 9 °C for both the test and validation sets.

Keywords


About the Authors

P. I. Zhukov
A. A. Ugarov Stary Oskol Technological Institute (Branch) NUST “MISIS”
Russian Federation


A. I. Glushchenko
A. A. Ugarov Stary Oskol Technological Institute (Branch) NUST “MISIS”
Russian Federation


A. V. Fomin
A. A. Ugarov Stary Oskol Technological Institute (Branch) NUST “MISIS”
Russian Federation


References

1. Рудыка В. И., Малина В. П. Сталь, кокс, уголь в 2010 г. и далее - состояние, посткризисные прогнозы и перспективы // Кокс и химия. 2010. № 2. С. 2-11. DOI 10.3103/s1068 364x1012001x

2. Новиков Н. И., Новикова Г. В. Топливно-энергетическая составляющая черной металлургии: проблемы и тенденции // Вестник КемГУ. 2013. № 4 (56). С. 257-263.

3. Бирюков А. Б., Волошин А. И., Олешкевич Т. Г. Математическое моделирование процесса тепловой обработки металла в печах // Сталь. 2016. № 1. С. 71-75.

4. Бирюков А. Б., Гинкул С. И., Гнитиев П. А., Олешкевич Т. Г. Математическое моделирование процессов тепловой обработки металла в печах с учетом окалинообразования // Сталь. 2016. № 8. С. 85-90.

5. Бирюков А. Б., Гнитиёв П. А., Олешкевич Т. Г. Адаптация математической модели процессов тепловой обработки металла в печах, учитывающей окалинообразование // Вестник Донецкого нац. техн. ун-та. 2017. № 2 (8). С. 30-37.

6. Саранча С. Ю., Моллер А. Б. Применение информационных технологий в металлургическом производстве: оптимизация технологии прокатки и раскроя готовой продукции в сортопрокатном производстве // Актуальные проблемы современной науки, техники и образования. 2014. Т. 1. С. 139-143.

7. Беренов Д. А., Белан С. Б., Аксенов К. А., Перескоков С. А. Полностью оцифрованное металлургическое производство: слежение, аналитика, моделирование // Фундаментальные исследования. 2017. № 9-2. С. 272-277.

8. Zuur, Alain F., Elena N. Ieno, Chris S. Elphick. A protocol for data exploration to avoid common statistical problems. Methods in ecology and evolution, 2010, vol. 1, no. 1, p. 3-14. DOI 10.1111/j.2041-210x.2009.00001.x

9. Zacharias P., Vávra M. A distance test of normality for a wide class of stationary processes. Econometrics and Statistics, 2017, vol. 2, p. 50-60. DOI 10.1016/j.ecosta.2016.11.005

10. Жуков П. И., Глущенко А. И., Фомин А. В. Построение зависимости температуры непрерывно литой заготовки от ретроспекции её нагрева // Системы управления и информационные технологии. 2019. № 4 (78). С. 73-78.

11. Zhou Z. On the doubt about margin explanation of boosting. Artificial Intelligence, 2013, vol. 203, p. 1-18. DOI 10.1016/j.artint.2013.07.002

12. Basha, Syed Muzamil, Dharmendra Singh Rajput, Vishnu Vandhan. Impact of gradient ascent and boosting algorithm in classification. International Journal of Intelligent Engineering and Systems (IJIES), 2018, vol. 11 no. 1, p. 41-49. DOI 10.22266/ijies2018.0228.05

13. Gomes, Heitor M. et al. Adaptive random forests for evolving data stream classification. Machine Learning, 2017, vol. 106, no. 9-10, p. 1469-1495. DOI 10.1007/s10994-017-5642-8

14. Khiari, Jihed. et al. Metabags: Bagged meta-decision trees for regression. Joint European conference on machine learning and knowledge discovery in databases. Springer, Cham, 2018. DOI 10.1007/978-3-030-10925-7_39

15. Döpke J., Fritsche U., Pierdzioch C. Predicting recessions with boosted regression trees. International Journal of Forecasting, 2017, vol. 33 no. 4, p. 745-759. DOI 10.1016/j.ijforecast. 2017.02.003

16. Qian, Ning et al. Predicting heat transfer of oscillating heat pipes for machining processes based on extreme gradient boosting algorithm. Applied Thermal Engineering, 2020, vol. 164. DOI 10.1016/j.applthermaleng.2019.114521

17. Vinayak R. K., Gilad-Bachrach R. Dart: Dropouts meet multiple additive regression trees. Artificial Intelligence and Statistics, PMLR, 2015, vol. 38, p. 489-497.


Review

For citations:


Zhukov P.I., Glushchenko A.I., Fomin A.V. Prediction Model of Temperature of Cast Billet Based on Its Heating Retrospection Using Boosting “Random Forest” Structure. Vestnik NSU. Series: Information Technologies. 2020;18(4):11-27. (In Russ.) https://doi.org/10.25205/1818-7900-2020-18-4-11-27

Views: 60


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-7900 (Print)
ISSN 2410-0420 (Online)